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Abstract

Lacking computers, investment analysis prior to the sixties was seldom quantitative. Toward the end of
the sixties, time-sharing computers were available. However, memory was tiny by today’s standards.
Only rudimentary statistical analysis was feasible. A few investment analysts with quantitative training
tried to gain an advantage by extracting private information from public data. This paper presents one
example, an analysis of catastrophic insurance losses. In 1965 Hurricane Betsy’s destructive path made
insurance analysts fearful that such catastrophic losses were a new norm. This motivated the analysis
presented here to put this loss in perspective.

Lacking computers, financial analysis of investments prior to the sixties was seldom quantitative. Toward
the end of the sixties, time-sharing computers (using teletype machines as terminals and paper tape as
backup media) were available. However, usable memory was tiny by today’s standards (64 kilobytes was
a lot). Basic statistical analysis was feasible, and a few financial analysts with quantitative training began
to try to gain an advantage over their colleagues by extracting what they viewed as private information
from public data. This paper presents one example, an analysis of catastrophic insurance losses in the
United States. Hurricane Betsy was an intense tropical cyclone that devastated Florida in 1965. Its
destructive path, which caused $500M in losses in then current dollars, made many professional investors
fearful that such catastrophic losses were a new norm that would adversely impact insurance stocks. This
motivated the analysis presented here, which was written as an internal memorandum in 1969 at one buy-
side boutique research firm to put the loss from Hurricane Betsy in perspective.

Introduction

Insurance is purchased as protection against certain kinds of random events. Examples include
losses due to fire, disease, crime, and accident. Policyholders find it desirable to insure against most
events that can have a serious detrimental impact on them. When these events occur in large enough
numbers, a reasonably accurate prediction can be made of the average per capita loss. This fact enables an
insurance company to cover its losses with a high degree of certainty with a premium only moderately
above the average loss. These kinds of events seldom produce wide swings in a company's earnings.
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In the case of infrequent large-scale events such as hurricanes, tornados, and other major
catastrophes, an insurance company does not have the protection of the law of averages. For example, in
1965 there were only 4 hurricanes with just one considered a major hurricane (Cat 3+), Hurricane Betsy.
Hence the average per capita loss can fluctuate enough to produce extremely erratic earnings. Because of
this, it is important to know what the catastrophic losses experienced during a particular period might
amount to. Also, to analyze earnings trends, it is necessary to know to what extent historical catastrophic
losses were abnormal.

The purpose of this memorandum is to outline a method for determining to what extent historical
catastrophic losses were abnormal and for predicting what they might be in the future.

Definitions and assumptions

A catastrophe is defined as a single event, which produces a total insured loss of at least $1.0
million.'The kinds of events, which produce catastrophic losses, include hurricanes, tornados, disorders,
hailstorms, and windstorms. In this memorandum, it is assumed that the number of catastrophes, which
occur during a period, is independent of the number, which occurred prior to that period. It is also
assumed that the size of a catastrophe is independent of the number and size of those, which occurred
previously.

The size of a catastrophe

Estimating the probability distribution of the size of a catastrophe was accomplished by fitting a
probability function to a sample of catastrophic losses. Other things equal, the larger the sample the more
accurate the fitting process. In this case, a large sample could be obtained only by combining data from
several different years. This is not proper unless the probability distribution is the same for these years.
Because it is plausible to expect the size of a catastrophe to have a trend over time, it was necessary to test
the reasonableness of assuming that the probability distribution did not change significantly from year to
year before combining the data. The entire process is outlined below.

A record of all catastrophic losses from 1953 to 1966 was obtained from the Insurance
Information Institute. This record is shown in Appendix A. The reasonableness of treating all or a major
part of this data as coming from the same probability distribution was checked in two ways. First, the
data for each year was used to estimate the appropriate fractiles of that year’s distribution. These
estimates were plotted on chart paper and a smooth curve was fit to them by eye. These curves represent
an initial estimate of the cumulative probability distribution. The charts for 1954, 1964 and 1965 are
typical and are shown in Appendix B, along with a more detailed description of their derivation. (A
complete set of charts for all 14 years is available from the authors on request.)

A visual inspection of the charts in Appendix B reveals little evidence for rejecting the hypothesis
that the probability distribution of the size of a catastrophe is relatively constant over time. If there were a
trend to the size of a catastrophe, the shapes of the curves would be expected to vary from year to year.
However, some variation would be expected due to random effects even if there is no trend. The key is to
see if there is more variation between widely separated years than between adjacent years. As an
example, consider the variation between the curves for 1964 and 1965 as compared with that between the
curves for 1954 and 1965. This comparison reveals little evidence of a long-term trend. The same holds
true when other one-year and eleven-year gap graphs are considered. An examination of the shapes of the
curves for each year is another useful exercise. Most of the data is consistent with the kind of shape
exhibited by the curve for 1964. A priori, a change in the probability distribution of the size of a
catastrophe would be expected to take the form of a long-term trend. There are only a few isolated years
of seemingly different data and no impression of a long term-trend, so perhaps the differences in shape
over the years can be attributed to randomness.
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In view of the result of the visual examination, a formal test of the hypotheis that the probability
distribution of the size of a catastrophe is constant over time was made using a non-parametric runs
test(described in Appendix C). The concept is that, if the observations from two samples from two
unknown distributions are combined and arranged in order of increasing size, the number of runs of
observations from each sample conveys information about the likelihood that the two distributions are the
same. The number of runs tends to be larger when the distributions are the same than when they are
different. In this case, the procedure consisted of combining the catastrophic loss figure for two selected
years, arranging them in order of increasing size, and determining whether the number of runs observed
was consistent with the hypothesis that the two distributions are the same. This was done for all 91
possible combinations of years taken two at a time. The results are shown in Appendix D. Appendix E
contains a detailed analysis of these results which shows that they are entirely consistent with the
hypothesis that the probability distribution of the size of a catastrophe is constant over time. Therefore it
is reasonable to combine all the data from 1953 to 1966.

Next, an intitial estimate of the cumulative distribution was obtained by applying the method
outlined in Appendix B to the combined data. The resulting scatter diagram is shown in Appendix F.
Several kinds of probability distributions were fit to the data, to find an analytic representation. A gamma
distribution was found to be adequate. The procedure is described more fully in Appendix F.

The final result is that the size of a catastrophe is distributed approximately as follows.

)
'O sy

(1)

y= In(x)

X=  Insured loss (millions of dollars).
a= 13765

B= 0679

A plot of this cumulative distribution is shown in Appendix F.
The number of catastrophes

The number of catastrophes occurring during a year was assumed to be independent of the
number occurring during any prior year. Specifically, the number was conjectured to have a Poisson
distribution with the parameter growing at a constant rate from year to year." Appendix G contains a more
elaborate description of this model, together with a detailed account of the process used to fit it to the
data.

The final result is that the number of catastrophes occurring during a year has approximately the
probability distribution shown below.
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m =m, (1+R)""

3
(' E) The year the distribution applies to.
X; =  The number of catastrophes in year i.
n= 1966
m, = 14.46
= 0.02984

A table of this probability distribution for each of the years 1967 to 1976 is shown in Appendix G.
The total loss

Knowing the probability distribution of the size of a catastrophe and the probability distribution
of the number of catastrophes, it is possible to calculate the expected total loss for a particular year. If
this is done for the years from 1953 to 1966, these theoretical losses then can be compared with the actual
losses to determine the probable error, which will be experienced if these distributions are used to forecast
future losses. Appendix H contains a detailed analysis of this kind using two related techniques. The
result is two probabilistic forecasts of future total losses. The forecast contained in Table 12was obtained
by combining the two empirical probability distributions discussed above. The one shown in Tables 13
was obtained by applying two variable linear regression to the log-linear model of total losses suggested
by these distributions. Because the mathematical technique used to obtain the figures shown in Table 13
tends to be more efficient than the one used to obtain the figures shown in Table 12, Table 13 is probably
a better guide to the future than Table 12.

Appendix A
Ranked observations of yearly catastrophic losses in millions from 1953 to 1966.

TABLE 1
Ranked Observations of Yearly Catastrophic Losses (millions)
Size

Rank 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
1.050 1.100 3.300 1.300 1.400 2.500 1.300 1.100 2.000 1.300 1.300 1.100 1.500 1.000

-

2 1.700 1.900 4.500 1.600 1.400 2.500 4.700 2.000 2.250 1.800 1.700 1.150 1.500 1.300
3 1.750 2.200 5.100 1.700 2.100 2.500 7.200 2.700 2.250 2.000 1.800 1.400 2.000 1.700
4 1.950 2.750 6.500 3.000 2.600 4.000 7.900 4.000 3.250 2.400 2.400 2.000 2.500 2.500
5 2.350 4.750 6.600 3.700 2.750 4000  13.000  5.300 4.250 2.600 3.500 2.500 3.000 2.600
6 2.400 7.150 9.500 4.000 2.800 5000 13.100  5.600 4.500 4.500 5.000 2.700 4.000 2.600
7 3.000 9.250 11700  4.500 3.700 8.500 6.000 4.500 6.000 2.710 5.000 2.800
8 4200 12500 19.000  5.700 4.500 9.800 6.250 6.000 11.000  3.500 6.000 3.800
9 5400 122.050 25200 16.900  8.400 91.000  7.000 6.200 3.500  14.000  3.900
10 6.650  129.700 20.000  11.700 7.500 6.300 3.600  30.000 4.200
11 9.350 32.200 11.000  6.500 5.000 38.000  5.000
12 9.400 13.000  8.100 5.000  70.000  5.400
13 11.900 100.000  8.500 7.000  500.000  5.500
14 12.250 9.800 9.500 7.500
15 14.300 17.500 12.000 57.000
16 23.300 15.000

17 81.000 23.000

18 30.000

19 67.200
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Appendix B

The accompanying charts were obtained by using the K’th order statistic as an estimate of the K/(N+1)
fractile of each year’s cumulative probability distribution (N being the number of catastrophes which
occurred during the year). After plotting these estimates, a smooth curve was drawn through the points,
fitted by eye using french curves, to obtain an estimate of the cumulative probability distribution. These

are the curves shown in the charts (A complete set of all fourteen charts is available from the authors on
request)
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Appendix C

The procedure outlined below is used to test the null hypothesis that two samples come from the same
distribution. It is described in detail in section 16.4, page 409 of Introduction to the Theory of Statistics
by Mood and Grayhbill."

Let X,,1=1---,n,, be a sample from a density f, (x) Let y,, i =1,---,n,, be a sample from density

fy (y) Let the two samples be combined and arranged in order of magnitude. This will result in a
sequence of x’s and y’s. Define a run as a sequence of letters of one kind bounded by letters of the other
kind. Let the number of runs be d . Then the probability density of the number of runs, h(d), is as
follows.

For d even andk:%.
{nx—lj(ny—lj
h(d):2 k-1 )\ k-1

(4)

For d oddandk:%.
(nx—lj[ny—lJ (nx—l)[ny—lJ
+
h(d)= k k-1 k-1 k
n +n
x Ty
")
(5)

To test the null hypothesis in question with a probability ¢ for the Type I error, find the smallest integer,
d,, such that

da

Yh(d)za

d=0

(6)

and reject the null hypothesis if d <d .

If n, and n, exceed 10, the distribution of d is approximately normal. The mean and variance of are
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nn
Uy =2—"">-+1
n,+n,
(7
ot = nn, (2nX2ny -n,-n,)
(no+n,) (n +n, 1)
(8)
Appendix D

The upper right portion (above the diagonal) of Table 5 shows the number of runs observed for
each pair of years. The lower left portion (below the diagonal) of the table shows the number of runs
expected under the null hypothesis, rounded to the nearest integer. An asterisk denotes rejection of the
null hypothesis that the two samples come from the same probability distribution at the stated level of
significance.

TABLE 5

Pairwise Runs Test

Sample 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

1953 diag 16 10 12 16 7* 9 18 16 20 15 18 16 17
1954 13 diag 9 9 15 7 9 16 15 17 11 16 14 14
1955 12 10 diag 12 9 6 8 11 13 17 10 13 11 11
1956 13 11 10 diag 12 7 6* 11 12 11 10 13 14 17
1957 14 11 11 11 diag 7 6* 13 16 17 12 17 14 15
1958 10 9 8 9 9 diag 5 5* 7 7* 7 5* 5* 7*
1959 10 9 8 9 9 7 diag 9 12 9 8 9 6* 9
1960 12 10 10 10 11 8 8 diag 12 13 13 16 14 16
1961 15 12 12 12 13 9 9 12 diag 14 10 18 13 12
1962 17 14 13 14 14 10 10 13 16 diag 16 22 16 14
1963 11 10 9 10 10 8 8 9 11 12 diag 15 14 15
1964 18 14 13 14 15 10 10 13 16 19 12 diag 20 18
1965 15 12 12 12 13 9 9 12 14 16 11 16 diag 18
1966 16 13 12 13 14 10 10 12 15 17 11 18 15 diag
Notes
1 Null hypothesis: Probability distribution of the size of a catastrophe is identical across years.

2 The upper diagonal entries are the observed number of runs.
3 The lower diagonal entries are the expected number of runs.
4 Asterisks denote significance at the 5% level.

Appendix E
Because the runs test described in Appendix C was applied repeatedly, the occurrence of some

asterisks in the table of Appendix D is to be expected. Under the null hypothesis, the probability of
obtaining exactly K asterisks in n applications of this test at a significance level of « is:

(E]ak (1-a)™
(9)

Thus, the probability of obtaining at least m asterisks in n such applications is:
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i@ak (1-a)"*

k=m

(10)

The figures in Table 6A were obtained by applying Equation ( 10) to the data in Appendix D and
suggests that the observed number of asterisks observed there is unusually high. However, an
examination of the table in Appendix D reveals that a substantial proportion of the asterisks observed are
related to the year 1958. (This was done for five other significance levels and a similar result was
observed. These tables are available from the authors on request.) To check the premise that only the
1958 data are abnormal, Equation ( 10) was applied to the remainder of the data. The results are shown in
Table 6B. They are entirely consistent with the hypothesis that the probability distribution of the size of a
catastrophe is constant over time.

Ordinarily, it is not proper to eliminate data selectively when conducting a test of this kind. In
this case, it is justified on the basis of a priori knowledge. Because of the nature of catastrophic events,
any change in the probability distribution of the size of a catastrophe would be expected to take the form
of a relatively smooth long-term trend. If this were true, the density of the asterisks in Table 5 of
Appendix D would be greatest in the upper right hand corner, where samples from widely separated years
are compared. This is not the case. Furthermore, a mechanism for changing the probability distribution
of the size of a catastrophe suddenly and for only one year is diffcult to imagine. For these reasons, it is
fair to interpret the existence of one apparently abnormal year in the middle of the time period as
coincidental.

TABLE 6
Table 6A
Significance Level = Probability of Obtaining Percentage
of Each Test at Least the Observed Observed Number of Applications of Applications
(alpha) Number of Asterisks Number of Asterisks of the Test With Asterisks
0.05 0.038 9 91 0.0989
Table 6B
Significance Level = Probability of Obtaining Percentage
of Each Test at Least the Observed Observed Number of Applications of Applications
(alpha) Number of Asterisks Number of Asterisks of the Test With Asterisks
0.05 0.754 3 78 0.0385

10
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Appendix F

Table 7 contains a record of the catastrophic losses experienced from 1953 to 1966 arranged in
order of increasing size. An estimate of the corresponding fractile of the cumulative probability
distribution, obtained by using the k’th order statistic as a proxy for the k/(n+1) fractile, also is shown.
This data is plotted in Table 8.

To see if the data could be represented adequately by a normal or log-normal probability
distribution, it also was plotted on both arithmetic and logarithmic probability paper. This showed that
the descriptive ability of these distributions was poor. Next, the gamma distribution was selected for
investigation. The reasons for this choice were that the range of definition for the size of a catastrophe
easily could be made to correspond to that of the distribution and the variety of shapes which the function
can assume. The gamma distribution was fit to the logarithms of the loss figures, expressed in millions.

Initial estimates of the parameters were obtained by using a modified version of the method of
moments. Denoting the distribution by

L
f (y) - F((Z+1)ﬂ(a+l)
(11)

it can be shown that

u=p(a+l)
(12)

o’ =p*(a+1)
(13)

The mean of the sample was used as a proxy for 4 and an unbiased estimate of the variance was
used in place of o*. The resulting estimates were:

a =1.292656
B =0.7243593
(14)

As a check of the goodness of fit, the Pearson y° test was applied."” The range of definition of
the estimated gamma distribution was broken down into 9 intervals, each with an expected number of
occurrences of at least 15. Then the y? quantity

o (v, —
pr Z np,

(15)

11
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was calculated, where V; is the actual number of occurrences in the i’th interval and np; is the
expected number of occurrences in the i’th interval. This quantity has approximately a y° distribution
with 6 degrees of freedom when the parameters are fit by minimizing y>. The test is conservative in

other cases. For the parameters shown above, the y* value is approximately 7.927. This is significant at
the 25% level. Clearly, the fit is good.

The parameters were then varied in a trial and error fashion in order to find values which
minimized . Within the limits of attainable precision, the following estimates seemed best.

a =1.3765

L =0.6796
(16)
The x° value for these parameters is approximately 7.650. This is a significant at the 27% level. The

corresponding cumulative distribution is plotted in Table 9. Its slope is slightly more in tune with Table
8.

The final result is that the size of a catastrophe is distributed approximately as follows.

9

ye
f =—7 - >0
(y) r(a+1)ﬂ(a+l) y
(17)
y=  Ln(x)
X=  Insured loss (millions)
a= 13765
p= 06796

12
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TABLE 7

Size
Rank
1

O 0 N O U B WN

A W NE OWLVOOWNOOUM w N O 00 NOODU A WNREOOWWOWNOOOULEWNEROOOWNOOOMBEWNERLO

Ranked Loss and Estimated Fractile of the Probability Distribution of a Catastrophe

Loss
(millions)
1.00
1.05
1.10
1.10
1.10
1.15
1.30
1.30
1.30
1.30
1.30
1.40
1.40
1.40
1.50
1.50
1.60
1.70
1.70
1.70
1.70
1.75
1.80
1.80
1.90
1.95
2.00
2.00
2.00
2.00
2.00
2.10
2.20
2.25
2.25
2.35
2.40
2.40
2.40
2.50
2.50
2.50
2.50
2.50
2.50
2.60
2.60
2.60
2.60
2.70
2.70
2.71
2.75
2.75

Estimated
Fractile
0.006173
0.012346
0.018519
0.024691
0.030864
0.037037
0.043210
0.049383
0.055556
0.061728
0.067901
0.074074
0.080247
0.086420
0.092593
0.098765
0.104938
0.111111
0.117284
0.123457
0.129630
0.135802
0.141975
0.148148
0.154321
0.160494
0.166667
0.172840
0.179012
0.185185
0.191358
0.197531
0.203704
0.209877
0.216049
0.222222
0.228395
0.234568
0.240741
0.246914
0.253086
0.259259
0.265432
0.271605
0.277778
0.283951
0.290123
0.296296
0.302469
0.308642
0.314815
0.320988
0.327160
0.333333

Size
Rank
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

Loss
(millions)
2.80
2.80
3.00
3.00
3.00
3.25
3.30
3.50
3.50
3.50
3.60
3.70
3.70
3.80
3.90
4.00
4.00
4.00
4.00
4.00
4.20
4.20
4.25
4.50
4.50
4.50
4.50
4.50
4.50
4.70
4.75
5.00
5.00
5.00
5.00
5.00
5.00
5.10
5.30
5.40
5.40
5.50
5.60
5.70
6.00
6.00
6.00
6.00
6.20
6.25
6.30
6.50
6.50
6.60

Estimated
Fractile
0.339506
0.345679
0.351852
0.358025
0.364198
0.370370
0.376543
0.382716
0.388889
0.395062
0.401235
0.407407
0.413580
0.419753
0.425926
0.432099
0.438272
0.444444
0.450617
0.456790
0.462963
0.469136
0.475309
0.481481
0.487654
0.493827
0.500000
0.506173
0.512346
0.518519
0.524691
0.530864
0.537037
0.543210
0.549383
0.555556
0.561728
0.567901
0.574074
0.580247
0.586420
0.592593
0.598765
0.604938
0.611111
0.617284
0.623457
0.629630
0.635802
0.641975
0.648148
0.654321
0.660494
0.666667

Size
Rank
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Loss
(millions)
6.65
7.00
7.00
7.15
7.20
7.50
7.50
7.90
8.10
8.40
8.50
8.50
9.25
9.35
9.40
9.50
9.50
9.80
9.80
11.00
11.00
11.70
11.70
11.90
12.00
12.25
12.50
13.00
13.00
13.10
14.00
14.30
15.00
16.90
17.50
19.00
20.00
23.00
23.30
25.20
30.00
30.00
32.20
38.00
57.00
67.20
70.00
81.00
91.00
100.00
122.05
129.70
500.00

Estimated
Fractile
0.672840
0.679012
0.685185
0.691358
0.697531
0.703704
0.709877
0.716049
0.722222
0.728395
0.734568
0.740741
0.746914
0.753086
0.759259
0.765432
0.771605
0.777778
0.783951
0.790123
0.796296
0.802469
0.808642
0.814815
0.820988
0.827160
0.833333
0.839506
0.845679
0.851852
0.858025
0.864198
0.870370
0.876543
0.882716
0.888889
0.895062
0.901235
0.907407
0.913580
0.919753
0.925926
0.932099
0.938272
0.944444
0.950617
0.956790
0.962963
0.969136
0.975309
0.9814381
0.987654
0.993827

13
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Appendix G

The number of catastrophes which occur during a year was assumed to have a Poisson
distribution with the parameter growing at a constant rate over time. Denoting the number of catastrophes

in the i’th year by X, the probability distribution of X; by fi (Xi ) , and the Poisson parameter by M. this
can be written as:

f(x)= ( n)zl j -~

(18)
X = 01,23,..
i = 1953,1954, ..., 1966, where i=1 represents the year 1953 and i=14 represents the year 1966.

i~1966)

M= mg,(1+ R)(

m1955 = 14.46

R = 0.02984

2
The above model was fit to the data in Appendix A using the method of minimum & . This method
consists of choosing parameters which minimize the quantity

L (v,—n
zz p'

i=1 i

where V; is the actual number of occurrences in the i’th class and npi is the expected number of

2
occurrences in the i’th class. This quantity has approximately a /4  distribution with (L-1-Q) degrees
2
of freedom when Q parameters are fit from the data by minimizing & . In this case, L=14, because
each year was treated as a class.”” With this scheme, NP; is the expected number of events in the i’th

year. This is the expected value of the i’th year’s Poisson distribution, which is m. Substituting these
values into the formula results in

14 (V My g6 (1 R)(I o )2

X = < M (1+ R)(|—1966)
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2 2
Because both My and R are being varied in order to minimize ¥ , Q=2 and ¥  will have
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1950 1955 196s 19720

1960
YEARS

2
approximately a &  distribution with 11 degrees of freedom.

Initial estimates for the minimizing values of the parameters (mlgeg and R) were obtained by
plotting the number of catastrophes on semi-logarithmic paper and fitting a trend line by eye. Table 10
shows the plotted data and the subjectively drawn trend line. The parameter values corresponding to this

2
line are Mg =15 and R =0.046. For these parameters, the X  value is approximately 16.08.

This corresponds to a significance level of about 13.8%.
TABLE 10

17
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2
The parameters weres then varied in a trial and error fashion in order to find values that minimized & .
Within the limits of attainable precision, the following estimates seemed best.

Mg =14.46
(20)
R =0.02984
(21)

The x? value for these parameters is approximately 14.79. This is significant at the 19.2% level.

The final result is that the number of catastrophes that occur during a year has approximately a Poisson
distribution with the parameter growing at a constant rate. In algebraic terms:

f (%)= ( T, Je

(22)

x= 0123

1953, 1954, . . ., 1966, where i=1 represents the year 1953 and i=14 represents the year 1966.

i-1966)

(
m= Mg (1+ R)
Myges = 14.46
R = 0.02984

Table 11 contains a tabulation of this estimating function for the years 1967 and 1976.

(The results for the years 1967 through 1976 is available from the authors on request.)

18
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TABLE 11
Year: 1967 Year: 1976
Expected Number of Catastrophes: 14.89 Expected Number of Catastrophes: 19.40
Number Estimated Number Estimated
of Estimated Cumulative of Estimated Cumulative
Catastrophes Probability Probability Catastrophes Probability Probability
0 0.00000 0.00000 0 0.00000 0.00000
1 0.00001 0.00001 1 0.00000 0.00000
2 0.00004 0.00004 2 0.00000 0.00000
3 0.00019 0.00023 3 0.00000 0.00001
4 0.00070 0.00093 4 0.00002 0.00003
5 0.00208 0.00301 5 0.00009 0.00011
6 0.00516 0.00817 6 0.00028 0.00039
7 0.01099 0.01916 7 0.00077 0.00116
8 0.02045 0.03961 8 0.00187 0.00303
9 0.03384 0.07345 9 0.00402 0.00705
10 0.05039 0.12384 10 0.00780 0.01485
11 0.06821 0.19205 11 0.01377 0.02862
12 0.08465 0.27670 12 0.02226 0.05088
13 0.09697 0.37367 13 0.03322 0.08410
14 0.10314 0.47681 14 0.04604 0.13014
15 0.10240 0.57920 15 0.05956 0.18970
16 0.09530 0.67451 16 0.07222 0.26192
17 0.08348 0.75799 17 0.08243 0.34435
18 0.06906 0.82705 18 0.08886 0.43321
19 0.05413 0.88118 19 0.09074 0.52395
20 0.04030 0.92148 20 0.08803 0.61198
21 0.02858 0.95006 21 0.08134 0.69332
22 0.01935 0.96941 22 0.07173 0.76505
23 0.01253 0.98194 23 0.06052 0.82556
24 0.00777 0.98971 24 0.04892 0.87449
25 0.00463 0.99434 25 0.03797 0.91246
26 0.00265 0.99699 26 0.02834 0.94079
27 0.00146 0.99845 27 0.02036 0.96116
28 0.00078 0.99923 28 0.01411 0.97527
29 0.00040 0.99963 29 0.00944 0.98471
30 0.00020 0.99983 30 0.00611 0.99081
Appendix H

The probability distribution of the size of a catastrophe and the probability distribution of the
number of catastrophes determines the probability distribution of total catastrophic loss. In this case,
however, only estimates of the first two distributions are available. If these estimates are used in place of
the true distributions, the result will not reflect errors arising from the approximate nature of the empirical
distributions. Because these errors are important, it seems worthwhile to allow for them when making a
prediction. In order to accomplish this, the empirical distributions were used to obtain an estimate of the
expected total loss for each of the years from 1953 to 1966.
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These estimates then were compared to the actual figures to obtain an estimate of the probable
error that will be experienced if the empirical distributions are used to predict future losses. The method
of comparison consisted of treating the estimated expected total loss as if it were the result of a two-
variable linear regression calculation with time as the independent variable.""

Given the estimated distribution of the size of a catastrophe, h(y) , and the estimated distribution of the
number of catastrophes, g (x) , for a particular year, the estimated expected total loss, L, is found from

st T e o]

(23)

In this expression, g(x) is a Poisson distribution and h(y) is derived from a Gamma distribution. The
expression can be simplified by noting that

{HI }{Zy}{nh(y }{Hdv.}}—XE(y

(24)

This is because

jy. J)dy; =(1-6;) i +SE(y)
(25)

Thus,

All that remains is to evaluate E(x) and E(y). E(x) is the expected value of the particular year’s
Poisson distribution. This is simply the Poisson parameter, m.. E(y) is the estimated expected value of
the size of a catastrophe and can be found as outlined below.

In Appendix F, it is concluded that the logarithm of the size of a catastrophe has approximately a
gamma distribution. Denoting this quantity by y,

- yoe )

_ ,y=>0
Clar)p™ 7

(27)

In order to find the distribution of the size of a catastrophe, the following transformation must be made.
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y=In(x)

(28)

Denoting the distribution of x by g(x), it is clear that

o 2]

(29)

since this transformation has a single valued inverse. The calculations are carried out below.

nTe t
g(x)= F(a_l_l)ﬂ(oﬁl)x X2

(30)

It is the expected value of this distribution that is required.

E(x):Txg(x)dx

(31) 1

In(x)
[|n (Iﬁ J
J; a+1 (e+1) dx

(32)
To evaluate this integral, use the transformation
y =In(x)

(33)
Then,

jxg =jx y)g(X(y))[%jdy
(34)
)= [ i
(35)
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(37)
The integrand in Equation ( 37) is a gamma distribution, so

1

N

(38)

This is the estimated expected value of the size of a catastrophe. Substituting this result in Equation ( 26)
provides the estimated expected total loss for a particular year.

Lo M
1 (1_ﬂ)a+l
(39)
_my (1+R)™Y

i (1_ﬂ)a+1

(40)
__{mNa+RyN
i (1_ﬂ)a+l
(41) |

L =L, (1+R)

(42)

}@+RY

In making probabilistic predictions, the logarithms of the above estimates, L,, were treated as if

they were the result of a two variable linear regression calculation with time as the independent variable.
This treatment was suggested by the linear form of the logarithmic relationship and the least squares
character of the method of minimum chi square. All the predictions for a particular year consist of three

numbers. One represents the best estimate and is simply L, for the k’th year. The other two numbers

define an estimated confidence interval for the actual loss. They are obtained from the following
equations.
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The upper and lower limits of the confidence interval are

In(Ly )£t & 1+%+ ’\Eyk_)_/)
2 Z(Yi—)_/)z
e i=1
(43)
1 N 2
s B n) (e
(44)
_1
y= N ; Yi
(45)
Yy, = Yeari.
ti = The t value that cuts off g of the right tail of a t distribution with (N-3) degrees of freedom.
2
L, = The estimated total loss in year i.

L, = The actual total loss in year i.

Tables | contains the results of applying these equations to the estimated and actual losses for the years
1953 to 1966.

Equation ( 42) implies that the logarithmic form for estimating total loss is linear.

In(L,)=In(Ly)+[In(1+R)]i

(146)

This suggests using a two variable linear regression as an alternative method of estimating future
losses. Tables Il reflects this approach.

The difference between Tables | and Il is striking. The estimated total losses in Table Ilare
considerably more consistent with actual total losses than those in the Table I. In addition, the confidence
intervals in Table Il are much narrower. The reason for these differences is that Table 1l reflects a more
efficient estimation procedure for the parameters of the final log-linear model for total losses. Thus,
Table llis more reliable than Table 1.
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Year
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

Table |

90% Confidence Interval

Actual
Total
Loss
87.65
293.35
91.40
62.40
73.55
20.50
47.20
130.00
169.25
192.30
32.70
197.86
677.50
106.80
NA
NA
NA
NA
NA
NA
NA
NA
NA

Estimated
Total
Loss
147.53
151.93
156.47
161.14
165.94
170.90
176.00
181.25
186.66
192.23
197.96
203.87
209.95
216.22
222.67
229.31
236.16
243.20
250.46
257.93
265.63
273.56
281.72

Lower
Limit
15.19
16.42
17.62
18.76
19.81
20.76
21.56
22.20
22.67
22.95
23.04
22.95
22.69
22.27
21.70
21.02
20.25
19.39
18.48
17.54
16.57
15.60
14.64

Upper
Limit
1432.60
1405.92
1389.74
1384.27
1389.89
1407.14
1436.73
1479.61
1536.90
1610.01
1700.63
1810.76
1942.80
2099.57
2284.22
2501.25
2754.70
3050.15
3393.96
3793.53
4257.57
4796.21
5421.34
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Year
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

Endnotes

Table Il

90% Confidence Interval

Actual
Total
Loss
87.65
293.35
91.40
62.40
73.55
20.50
47.20
130.00
169.25
192.30
32.70
197.86
677.50
106.80
NA
NA
NA
NA
NA
NA
NA
NA
NA

Estimated
Total
Loss
72.28
76.59
81.16
86.00
91.13
96.56
102.30
108.40
114.90
121.70
129.00
136.70
144.80
153.50
162.60
172.30
182.60
193.50
205.00
217.30
230.20
243.90
258.50

Lower
Limit
11.24
12.39
13.58
14.78
15.99
17.19
18.34
19.43
20.45
21.37
22.18
22.86
23.43
23.87
24.18
24.36
24.44
24.40
24.27
24.05
23.75
23.38
22.96

Upper
Limit
464.80
473.50
485.20
500.30
519.20
542.50
570.80
604.90
645.50
693.60
750.40
817.10
895.40
987.00
1094.00
1219.00
1365.00
1534.00
1732.00
1963.00
2231.00
2545.00
2910.00

' This was the definition the insurance industry used at the time. The industry supplied the data used in the
_analysis. (Note that the current definition of a catastrophe has increased to $25.0 million.)
" Assuming a growing Poisson parameter for the number of catastrophes and a constant probability for the size

of a catastrophe seems inconsistent. This was done to simplify the computations so that they could be run

_more easily on the then available computers.
Mood, Alexander and Franklin Graybill. Introduction to the Theory of Statistics. McGraw-Hill Book

~ Company. Second Edition, 1963.
Y This technique is described in sections 30.1 — 30.3 of Cramer, Harald. Mathematical Methods of Statistics.
Princeton University Press. 1946.

¥ Cramer describes this technique in sections 30.1 to 40.3 of Mathematical Methods of Statistics.
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¥ professor John Rolph of Columbia University suggested this method of classification. It is not in accordance
with the classification scheme outlined in Cramer, but does reflect the intent of that material. Clearly, a low

2
X value will be achieved only if the model is consistent with the data.

Vil professor John Rolph of Columbia University suggested this method of analysis. It is an approximate
treatment which should give reasonable results.
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