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Abstract 
 

Lacking computers, investment analysis prior to the sixties was seldom quantitative. Toward the end of 

the sixties, time-sharing computers were available. However, memory was tiny by today’s standards. 

Only rudimentary statistical analysis was feasible. A few investment analysts with quantitative training 

tried to gain an advantage by extracting private information from public data. This paper presents one 

example, an analysis of catastrophic insurance losses. In 1965 Hurricane Betsy’s destructive path made 

insurance analysts fearful that such catastrophic losses were a new norm. This motivated the analysis 

presented here to put this loss in perspective. 
 

Lacking computers, financial analysis of investments prior to the sixties was seldom quantitative.  Toward 

the end of the sixties, time-sharing computers (using teletype machines as terminals and paper tape as 

backup media) were available.  However, usable memory was tiny by today’s standards (64 kilobytes was 

a lot).  Basic statistical analysis was feasible, and a few financial analysts with quantitative training began 

to try to gain an advantage over their colleagues by extracting what they viewed as private information 

from public data. This paper presents one example, an analysis of catastrophic insurance losses in the 

United States.  Hurricane Betsy was an intense tropical cyclone that devastated Florida in 1965. Its 

destructive path, which caused $500M in losses in then current dollars, made many professional investors 

fearful that such catastrophic losses were a new norm that would adversely impact insurance stocks.  This 

motivated the analysis presented here, which was written as an internal memorandum in 1969 at one buy-

side boutique research firm to put the loss from Hurricane Betsy in perspective. 
 

Introduction 
 

Insurance is purchased as protection against certain kinds of random events. Examples include 

losses due to fire, disease, crime, and accident. Policyholders find it desirable to insure against most 

events that can have a serious detrimental impact on them. When these events occur in large enough 

numbers, a reasonably accurate prediction can be made of the average per capita loss. This fact enables an 

insurance company to cover its losses with a high degree of certainty with a premium only moderately 

above the average loss. These kinds of events seldom produce wide swings in a company's earnings.  
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In the case of infrequent large-scale events such as hurricanes, tornados, and other major 

catastrophes, an insurance company does not have the protection of the law of averages.  For example, in 

1965 there were only 4 hurricanes with just one considered a major hurricane (Cat 3+), Hurricane Betsy. 

Hence the average per capita loss can fluctuate enough to produce extremely erratic earnings. Because of 

this, it is important to know what the catastrophic losses experienced during a particular period might 

amount to. Also, to analyze earnings trends, it is necessary to know to what extent historical catastrophic 

losses were abnormal. 
 

The purpose of this memorandum is to outline a method for determining to what extent historical 

catastrophic losses were abnormal and for predicting what they might be in the future. 
 

Definitions and assumptions 
 

A catastrophe is defined as a single event, which produces a total insured loss of at least $1.0 

million.
i
The kinds of events, which produce catastrophic losses, include hurricanes, tornados, disorders, 

hailstorms, and windstorms. In this memorandum, it is assumed that the number of catastrophes, which 

occur during a period, is independent of the number, which occurred prior to that period. It is also 

assumed that the size of a catastrophe is independent of the number and size of those, which occurred 

previously. 
 

The size of a catastrophe 
 

Estimating the probability distribution of the size of a catastrophe was accomplished by fitting a 

probability function to a sample of catastrophic losses. Other things equal, the larger the sample the more 

accurate the fitting process.  In this case, a large sample could be obtained only by combining data from 

several different years. This is not proper unless the probability distribution is the same for these years. 

Because it is plausible to expect the size of a catastrophe to have a trend over time, it was necessary to test 

the reasonableness of assuming that the probability distribution did not change significantly from year to 

year before combining the data. The entire process is outlined below. 
 

A record of all catastrophic losses from 1953 to 1966 was obtained from the Insurance 

Information Institute.  This record is shown in Appendix A.  The reasonableness of treating all or a major 

part of this data as coming from the same probability distribution was checked in two ways.  First, the 

data for each year was used to estimate the appropriate fractiles of that year’s distribution.  These 

estimates were plotted on chart paper and a smooth curve was fit to them by eye.  These curves represent 

an initial estimate of the cumulative probability distribution.  The charts for 1954, 1964 and 1965 are 

typical and are shown in Appendix B, along with a more detailed description of their derivation. (A 

complete set of charts for all 14 years is available from the authors on request.) 
 

A visual inspection of the charts in Appendix B reveals little evidence for rejecting the hypothesis 

that the probability distribution of the size of a catastrophe is relatively constant over time.  If there were a 

trend to the size of a catastrophe, the shapes of the curves would be expected to vary from year to year.  

However, some variation would be expected due to random effects even if there is no trend.  The key is to 

see if there is more variation between widely separated years than between adjacent years.  As an 

example, consider the variation between the curves for 1964 and 1965 as compared with that between the 

curves for 1954 and 1965. This comparison reveals little evidence of a long-term trend. The same holds 

true when other one-year and eleven-year gap graphs are considered. An examination of the shapes of the 

curves for each year is another useful exercise.  Most of the data is consistent with the kind of shape 

exhibited by the curve for 1964.  A priori, a change in the probability distribution of the size of a 

catastrophe would be expected to take the form of a long-term trend.  There are only a few isolated years 

of seemingly different data and no impression of a long term-trend, so perhaps the differences in shape 

over the years can be attributed to randomness. 
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In view of the result of the visual examination, a formal test of the hypotheis that the probability 

distribution of the size of a catastrophe is constant over time was made using a non-parametric runs 

test(described in Appendix C).  The concept is that, if the observations from two samples from two 

unknown distributions are combined and arranged in order of increasing size, the number of runs of 

observations from each sample conveys information about the likelihood that the two distributions are the 

same.  The number of runs tends to be larger when the distributions are the same than when they are 

different.  In this case, the procedure consisted of combining the catastrophic loss figure for two selected 

years, arranging them in order of increasing size, and determining whether the number of runs observed 

was consistent with the hypothesis that the two distributions are the same.  This was done for all 91 

possible combinations of years taken two at a time.  The results are shown in Appendix D.  Appendix E 

contains a detailed analysis of these results which shows that they are entirely consistent with the 

hypothesis that the probability distribution of the size of a catastrophe is constant over time. Therefore it 

is reasonable to combine all the data from 1953 to 1966. 
 

Next, an intitial estimate of the cumulative distribution was obtained by applying the method 

outlined in Appendix B to the combined data.  The resulting scatter diagram is shown in Appendix F.  

Several kinds of probability distributions were fit to the data, to find an analytic representation.  A gamma 

distribution was found to be adequate.  The procedure is described more fully in Appendix F. 
 

The final result is that the size of a catastrophe is distributed approximately as follows. 
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( 1) 

 

y    ln x . 

 

x   Insured loss (millions of dollars). 

 

   1.3765 

 

   0.6796 

 

A plot of this cumulative distribution is shown in Appendix F. 
 

The number of catastrophes 
 

The number of catastrophes occurring during a year was assumed to be independent of the 

number occurring during any prior year.  Specifically, the number was conjectured to have a Poisson 

distribution with the parameter growing at a constant rate from year to year.
ii
 Appendix G contains a more 

elaborate description of this model, together with a detailed account of the process used to fit it to the 

data. 
 

The final result is that the number of catastrophes occurring during a year has approximately the 

probability distribution shown below. 
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i   The year the distribution applies to. 
 

ix   The number of catastrophes in year i . 
 

n   1966 
 

nm   14.46 
 

R   0.02984 
 

A table of this probability distribution for each of the years 1967 to 1976 is shown in Appendix G. 
 

The total loss 
 

Knowing the probability distribution of the size of a catastrophe and the probability distribution 

of the number of catastrophes, it is possible to calculate the expected total loss for a particular year.  If 

this is done for the years from 1953 to 1966, these theoretical losses then can be compared with the actual 

losses to determine the probable error, which will be experienced if these distributions are used to forecast 

future losses.  Appendix H contains a detailed analysis of this kind using two related techniques.  The 

result is two probabilistic forecasts of future total losses.  The forecast contained in Table 12was obtained 

by combining the two empirical probability distributions discussed above. The one shown in Tables 13 

was obtained by applying two variable linear regression to the log-linear model of total losses suggested 

by these distributions.  Because the mathematical technique used to obtain the figures shown in Table 13 

tends to be more efficient than the one used to obtain the figures shown in Table 12, Table 13 is probably 

a better guide to the future than Table 12. 
 

Appendix A 

Ranked observations of yearly catastrophic losses in millions from 1953 to 1966. 
 

TABLE 1 
 

 
 

Size

Rank 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

1 1.050 1.100 3.300 1.300 1.400 2.500 1.300 1.100 2.000 1.300 1.300 1.100 1.500 1.000

2 1.700 1.900 4.500 1.600 1.400 2.500 4.700 2.000 2.250 1.800 1.700 1.150 1.500 1.300

3 1.750 2.200 5.100 1.700 2.100 2.500 7.200 2.700 2.250 2.000 1.800 1.400 2.000 1.700

4 1.950 2.750 6.500 3.000 2.600 4.000 7.900 4.000 3.250 2.400 2.400 2.000 2.500 2.500

5 2.350 4.750 6.600 3.700 2.750 4.000 13.000 5.300 4.250 2.600 3.500 2.500 3.000 2.600

6 2.400 7.150 9.500 4.000 2.800 5.000 13.100 5.600 4.500 4.500 5.000 2.700 4.000 2.600

7 3.000 9.250 11.700 4.500 3.700 8.500 6.000 4.500 6.000 2.710 5.000 2.800

8 4.200 12.500 19.000 5.700 4.500 9.800 6.250 6.000 11.000 3.500 6.000 3.800

9 5.400 122.050 25.200 16.900 8.400 91.000 7.000 6.200 3.500 14.000 3.900

10 6.650 129.700 20.000 11.700 7.500 6.300 3.600 30.000 4.200

11 9.350 32.200 11.000 6.500 5.000 38.000 5.000

12 9.400 13.000 8.100 5.000 70.000 5.400

13 11.900 100.000 8.500 7.000 500.000 5.500

14 12.250 9.800 9.500 7.500

15 14.300 17.500 12.000 57.000

16 23.300 15.000

17 81.000 23.000

18 30.000

19 67.200

Ranked Observations of Yearly Catastrophic Losses (millions)
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Appendix B 
 

The accompanying charts were obtained by using the K’th order statistic as an estimate of the K/(N+1) 

fractile of each year’s cumulative probability distribution (N being the number of catastrophes which 

occurred during the year).  After plotting these estimates, a smooth curve was drawn through the points, 

fitted by eye using french curves, to obtain an estimate of the cumulative probability distribution.  These 

are the curves shown in the charts (A complete set of all fourteen charts is available from the authors on 

request) 

TABLE 2 
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TABLE 3 

 

 

TABLE 4 
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Appendix C 

 

The procedure outlined below is used to test the null hypothesis that two samples come from the same 

distribution.  It is described in detail in section 16.4, page 409 of Introduction to the Theory of Statistics 

by Mood and Graybill.
iii
 

 

Let , 1, ,i xx i n  , be a sample from a density  xf x .  Let , 1, ,i yy i n  , be a sample from density 

 yf y .  Let the two samples be combined and arranged in order of magnitude.  This will result in a 

sequence of x’s and y’s.  Define a run as a sequence of letters of one kind bounded by letters of the other 

kind.  Let the number of runs be d .  Then the probability density of the number of runs,  h d , is as 

follows. 
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( 5) 

 

To test the null hypothesis in question with a probability   for the Type I error, find the smallest integer, 

d , such that 
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0

d

d

h d
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
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( 6) 

 

and reject the null hypothesis if d d . 

 

If xn  and yn  exceed 10, the distribution of d  is approximately normal.  The mean and variance of are 
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Appendix D 

 
The upper right portion (above the diagonal) of Table 5 shows the number of runs observed for 

each pair of years.  The lower left portion (below the diagonal) of the table shows the number of runs 

expected under the null hypothesis, rounded to the nearest integer.  An asterisk denotes rejection of the 

null hypothesis that the two samples come from the same probability distribution at the stated level of 

significance. 

TABLE 5 

 

 
 

Appendix E 

 
Because the runs test described in Appendix C was applied repeatedly, the occurrence of some 

asterisks in the table of Appendix D is to be expected.  Under the null hypothesis, the probability of 

obtaining exactly k  asterisks in n  applications of this test at a significance level of    is: 

 

 1
n kk

n

k
 
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( 9) 

 

Thus, the probability of obtaining at least m  asterisks in n  such applications is: 

Sample 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

1953 diag 16 10 12 16 7 * 9 18 16 20 15 18 16 17

1954 13 diag 9 9 15 7 9 16 15 17 11 16 14 14

1955 12 10 diag 12 9 6 8 11 13 17 10 13 11 11

1956 13 11 10 diag 12 7 6 * 11 12 11 10 13 14 17

1957 14 11 11 11 diag 7 6 * 13 16 17 12 17 14 15

1958 10 9 8 9 9 diag 5 5 * 7 7 * 7 5 * 5 * 7 *

1959 10 9 8 9 9 7 diag 9 12 9 8 9 6 * 9

1960 12 10 10 10 11 8 8 diag 12 13 13 16 14 16

1961 15 12 12 12 13 9 9 12 diag 14 10 18 13 12

1962 17 14 13 14 14 10 10 13 16 diag 16 22 16 14

1963 11 10 9 10 10 8 8 9 11 12 diag 15 14 15

1964 18 14 13 14 15 10 10 13 16 19 12 diag 20 18

1965 15 12 12 12 13 9 9 12 14 16 11 16 diag 18

1966 16 13 12 13 14 10 10 12 15 17 11 18 15 diag

Notes

1 Null hypothesis:  Probability distribution of the size of a catastrophe is identical across years.

2 The upper diagonal entries are the observed number of runs.

3 The lower diagonal entries are the expected number of runs.

4 Asterisks denote significance at the 5% level.

Pairwise Runs Test
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The figures in Table 6A were obtained by applying Equation ( 10) to the data in Appendix D and 

suggests that the observed number of asterisks observed there is unusually high.  However, an 

examination of the table in Appendix D reveals that a substantial proportion of the asterisks observed are 

related to the year 1958. (This was done for five other significance levels and a similar result was 

observed. These tables are available from the authors on request.)  To check the premise that only the 

1958 data are abnormal, Equation ( 10) was applied to the remainder of the data.  The results are shown in 

Table 6B.  They are entirely consistent with the hypothesis that the probability distribution of the size of a 

catastrophe is constant over time. 

 

Ordinarily, it is not proper to eliminate data selectively when conducting a test of this kind.  In 

this case, it is justified on the basis of a priori knowledge.  Because of the nature of catastrophic events, 

any change in the probability distribution of the size of a catastrophe would be expected to take the form 

of a relatively smooth long-term trend.  If this were true, the density of the asterisks in Table 5 of 

Appendix D would be greatest in the upper right hand corner, where samples from widely separated years 

are compared.  This is not the case.  Furthermore, a mechanism for changing the probability distribution 

of the size of a catastrophe suddenly and for only one year is diffcult to imagine.  For these reasons, it is 

fair to interpret the existence of one apparently abnormal year in the middle of the time period as 

coincidental. 

 

TABLE 6 

 

 

 

 

Significance Level Probability of Obtaining Percentage

of Each Test at Least the Observed Observed Number of Applications  of Applications

(alpha) Number of Asterisks Number of Asterisks of the Test With Asterisks

0.05 0.038 9 91 0.0989

Significance Level Probability of Obtaining Percentage

of Each Test at Least the Observed Observed Number of Applications  of Applications

(alpha) Number of Asterisks Number of Asterisks of the Test With Asterisks

0.05 0.754 3 78 0.0385

Table 6A

Table 6B
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Appendix F 

 
Table 7 contains a record of the catastrophic losses experienced from 1953 to 1966 arranged in 

order of increasing size.  An estimate of the corresponding fractile of the cumulative probability 

distribution, obtained by using the k’th order statistic as a proxy for the k/(n+1) fractile, also is shown.  

This data is plotted in Table 8. 

 

To see if the data could be represented adequately by a normal or log-normal probability 

distribution, it also was plotted on both arithmetic and logarithmic probability paper.  This showed that 

the descriptive ability of these distributions was poor.  Next, the gamma distribution was selected for 

investigation.  The reasons for this choice were that the range of definition for the size of a catastrophe 

easily could be made to correspond to that of the distribution and the variety of shapes which the function 

can assume.  The gamma distribution was fit to the logarithms of the loss figures, expressed in millions. 

 

Initial estimates of the parameters were obtained by using a modified version of the method of 

moments.  Denoting the distribution by 
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( 11) 

 

it can be shown that 
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( 12) 

 2 2 1     

( 13) 

 

The mean of the sample was used as a proxy for   and an unbiased estimate of the variance was 

used in place of 
2 .  The resulting estimates were: 

 

1.292656

0.7243593






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( 14) 

 

As a check of the goodness of fit, the Pearson 
2  test was applied.

iv
 The range of definition of 

the estimated gamma distribution was broken down into 9 intervals, each with an expected number of 

occurrences of at least 15.  Then the 
2  quantity 
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was calculated, where iv  is the actual number of occurrences in the i’th interval and inp  is the 

expected number of occurrences in the i’th interval.  This quantity has approximately a 
2  distribution 

with 6 degrees of freedom when the parameters are fit by minimizing 
2 .  The test is conservative in 

other cases.  For the parameters shown above, the 
2  value is approximately 7.927.  This is significant at 

the 25% level.  Clearly, the fit is good. 

 

The parameters were then varied in a trial and error fashion in order to find values which 

minimized 
2 .  Within the limits of attainable precision, the following estimates seemed best. 

 

1.3765

0.6796








 

( 16) 

The 
2  value for these parameters is approximately 7.650.  This is a significant at the 27% level.  The 

corresponding cumulative distribution is plotted in Table 9.  Its slope is slightly more in tune with Table 

8. 

 

The final result is that the size of a catastrophe is distributed approximately as follows. 
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( 17) 

y    Ln x  

 

x   Insured loss (millions) 

 

   1.3765  

 

   0.6796  
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TABLE 7 

 

 

  

Size Loss Estimated Size Loss Estimated Size Loss Estimated

Rank (millions) Fractile Rank (millions) Fractile Rank (millions) Fractile

1 1.00 0.006173 55 2.80 0.339506 109 6.65 0.672840

2 1.05 0.012346 56 2.80 0.345679 110 7.00 0.679012

3 1.10 0.018519 57 3.00 0.351852 111 7.00 0.685185

4 1.10 0.024691 58 3.00 0.358025 112 7.15 0.691358

5 1.10 0.030864 59 3.00 0.364198 113 7.20 0.697531

6 1.15 0.037037 60 3.25 0.370370 114 7.50 0.703704

7 1.30 0.043210 61 3.30 0.376543 115 7.50 0.709877

8 1.30 0.049383 62 3.50 0.382716 116 7.90 0.716049

9 1.30 0.055556 63 3.50 0.388889 117 8.10 0.722222

10 1.30 0.061728 64 3.50 0.395062 118 8.40 0.728395

11 1.30 0.067901 65 3.60 0.401235 119 8.50 0.734568

12 1.40 0.074074 66 3.70 0.407407 120 8.50 0.740741

13 1.40 0.080247 67 3.70 0.413580 121 9.25 0.746914

14 1.40 0.086420 68 3.80 0.419753 122 9.35 0.753086

15 1.50 0.092593 69 3.90 0.425926 123 9.40 0.759259

16 1.50 0.098765 70 4.00 0.432099 124 9.50 0.765432

17 1.60 0.104938 71 4.00 0.438272 125 9.50 0.771605

18 1.70 0.111111 72 4.00 0.444444 126 9.80 0.777778

19 1.70 0.117284 73 4.00 0.450617 127 9.80 0.783951

20 1.70 0.123457 74 4.00 0.456790 128 11.00 0.790123

21 1.70 0.129630 75 4.20 0.462963 129 11.00 0.796296

22 1.75 0.135802 76 4.20 0.469136 130 11.70 0.802469

23 1.80 0.141975 77 4.25 0.475309 131 11.70 0.808642

24 1.80 0.148148 78 4.50 0.481481 132 11.90 0.814815

25 1.90 0.154321 79 4.50 0.487654 133 12.00 0.820988

26 1.95 0.160494 80 4.50 0.493827 134 12.25 0.827160

27 2.00 0.166667 81 4.50 0.500000 135 12.50 0.833333

28 2.00 0.172840 82 4.50 0.506173 136 13.00 0.839506

29 2.00 0.179012 83 4.50 0.512346 137 13.00 0.845679

30 2.00 0.185185 84 4.70 0.518519 138 13.10 0.851852

31 2.00 0.191358 85 4.75 0.524691 139 14.00 0.858025

32 2.10 0.197531 86 5.00 0.530864 140 14.30 0.864198

33 2.20 0.203704 87 5.00 0.537037 141 15.00 0.870370

34 2.25 0.209877 88 5.00 0.543210 142 16.90 0.876543

35 2.25 0.216049 89 5.00 0.549383 143 17.50 0.882716

36 2.35 0.222222 90 5.00 0.555556 144 19.00 0.888889

37 2.40 0.228395 91 5.00 0.561728 145 20.00 0.895062

38 2.40 0.234568 92 5.10 0.567901 146 23.00 0.901235

39 2.40 0.240741 93 5.30 0.574074 147 23.30 0.907407

40 2.50 0.246914 94 5.40 0.580247 148 25.20 0.913580

41 2.50 0.253086 95 5.40 0.586420 149 30.00 0.919753

42 2.50 0.259259 96 5.50 0.592593 150 30.00 0.925926

43 2.50 0.265432 97 5.60 0.598765 151 32.20 0.932099

44 2.50 0.271605 98 5.70 0.604938 152 38.00 0.938272

45 2.50 0.277778 99 6.00 0.611111 153 57.00 0.944444

46 2.60 0.283951 100 6.00 0.617284 154 67.20 0.950617

47 2.60 0.290123 101 6.00 0.623457 155 70.00 0.956790

48 2.60 0.296296 102 6.00 0.629630 156 81.00 0.962963

49 2.60 0.302469 103 6.20 0.635802 157 91.00 0.969136

50 2.70 0.308642 104 6.25 0.641975 158 100.00 0.975309

51 2.70 0.314815 105 6.30 0.648148 159 122.05 0.981481

52 2.71 0.320988 106 6.50 0.654321 160 129.70 0.987654

53 2.75 0.327160 107 6.50 0.660494 161 500.00 0.993827

54 2.75 0.333333 108 6.60 0.666667

Ranked Loss and Estimated Fractile of the Probability Distribution of a Catastrophe
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TABLE 8 
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TABLE 9 
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Appendix G 

 

The number of catastrophes which occur during a year was assumed to have a Poisson 

distribution with the parameter growing at a constant rate over time.  Denoting the number of catastrophes 

in the i’th year by ix , the probability distribution of ix  by  i if x , and the Poisson parameter by im , this 

can be written as: 

 

 
!

i

i

x
mi

i i

i

m
f x e

x

 
  
 

 

( 18) 

 

ix   0, 1, 2, 3, … 

 

i   1953, 1954, . . . , 1966, where i=1 represents the year 1953 and i=14 represents the year 1966. 

 

im    
 1966

1966 1
i

m R


  

 

1966m   14.46 

 

R   0.02984 

 

The above model was fit to the data in Appendix A using the method of minimum 
2 .

v
 This method 

consists of choosing parameters which minimize the quantity 

 

 
2

2

1

L
i i

i i

v np

np





  

 

where iv  is the actual number of occurrences in the i’th class and inp  is the expected number of 

occurrences in the i’th class.  This quantity has approximately a 
2  distribution with (L-1-Q) degrees 

of freedom when Q parameters are fit from the data by minimizing 
2 .  In this case, L=14, because 

each year was treated as a class.
vi
 With this scheme, inp  is the expected number of events in the i’th 

year.  This is the expected value of the i’th year’s Poisson distribution, which is im .  Substituting these 

values into the formula results in 

 

 
  

 
 

2
1966

14 1966
2

1966
1

1966

1

1

i

i

i
i

v m R

m R







 



  

( 19) 
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Because both 14m  and R  are being varied in order to minimize 
2 , Q=2 and 

2  will have 

approximately a 
2  distribution with 11 degrees of freedom. 

 

Initial estimates for the minimizing values of the parameters ( 1966m  and R ) were obtained by 

plotting the number of catastrophes on semi-logarithmic paper and fitting a trend line by eye.  Table 10 

shows the plotted data and the subjectively drawn trend line.  The parameter values corresponding to this 

line are 1966 15m   and 0.046R  .  For these parameters, the 
2  value is approximately 16.08.  

This corresponds to a significance level of about 13.8%. 

TABLE 10 
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The parameters weres then varied in a trial and error fashion in order to find values that minimized 
2 .  

Within the limits of attainable precision, the following estimates seemed best. 

 

1966 14.46m   

( 20) 
0.02984R   

( 21) 

 

The 
2  value for these parameters is approximately 14.79.  This is significant at the 19.2% level. 

 

The final result is that the number of catastrophes that occur during a year has approximately a Poisson 

distribution with the parameter growing at a constant rate.  In algebraic terms: 

 

 
!

i

i

x
mi

i i

i

m
f x e

x

 
  
 

 

( 22) 

 

ix   0,1,2,3,  

 

i   1953, 1954, . . ., 1966, where i=1 represents the year 1953 and i=14 represents the year 1966. 

 

im    
 1966

1966 1
i

m R


  

 

1966m   14.46 

 

R   0.02984 

 

Table 11 contains a tabulation of this estimating function for the years 1967 and 1976. 

 

(The results for the years 1967 through 1976 is available from the authors on request.) 
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TABLE 11 

 

 
 

 

Appendix H 

 

The probability distribution of the size of a catastrophe and the probability distribution of the 

number of catastrophes determines the probability distribution of total catastrophic loss.  In this case, 

however, only estimates of the first two distributions are available.  If these estimates are used in place of 

the true distributions, the result will not reflect errors arising from the approximate nature of the empirical 

distributions.  Because these errors are important, it seems worthwhile to allow for them when making a 

prediction.  In order to accomplish this, the empirical distributions were used to obtain an estimate of the 

expected total loss for each of the years from 1953 to 1966.   

Year: 1967 Year: 1976

Expected Number of Catastrophes: 14.89 Expected Number of Catastrophes: 19.40

Number Estimated Number Estimated

Of Estimated Cumulative Of Estimated Cumulative

Catastrophes Probability Probability Catastrophes Probability Probability

0 0.00000 0.00000 0 0.00000 0.00000

1 0.00001 0.00001 1 0.00000 0.00000

2 0.00004 0.00004 2 0.00000 0.00000

3 0.00019 0.00023 3 0.00000 0.00001

4 0.00070 0.00093 4 0.00002 0.00003

5 0.00208 0.00301 5 0.00009 0.00011

6 0.00516 0.00817 6 0.00028 0.00039

7 0.01099 0.01916 7 0.00077 0.00116

8 0.02045 0.03961 8 0.00187 0.00303

9 0.03384 0.07345 9 0.00402 0.00705

10 0.05039 0.12384 10 0.00780 0.01485

11 0.06821 0.19205 11 0.01377 0.02862

12 0.08465 0.27670 12 0.02226 0.05088

13 0.09697 0.37367 13 0.03322 0.08410

14 0.10314 0.47681 14 0.04604 0.13014

15 0.10240 0.57920 15 0.05956 0.18970

16 0.09530 0.67451 16 0.07222 0.26192

17 0.08348 0.75799 17 0.08243 0.34435

18 0.06906 0.82705 18 0.08886 0.43321

19 0.05413 0.88118 19 0.09074 0.52395

20 0.04030 0.92148 20 0.08803 0.61198

21 0.02858 0.95006 21 0.08134 0.69332

22 0.01935 0.96941 22 0.07173 0.76505

23 0.01253 0.98194 23 0.06052 0.82556

24 0.00777 0.98971 24 0.04892 0.87449

25 0.00463 0.99434 25 0.03797 0.91246

26 0.00265 0.99699 26 0.02834 0.94079

27 0.00146 0.99845 27 0.02036 0.96116

28 0.00078 0.99923 28 0.01411 0.97527

29 0.00040 0.99963 29 0.00944 0.98471

30 0.00020 0.99983 30 0.00611 0.99081
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These estimates then were compared to the actual figures to obtain an estimate of the probable 

error that will be experienced if the empirical distributions are used to predict future losses.  The method 

of comparison consisted of treating the estimated expected total loss as if it were the result of a two-

variable linear regression calculation with time as the independent variable.
vii

 

 

Given the estimated distribution of the size of a catastrophe,  h y , and the estimated distribution of the 

number of catastrophes,  g x , for a particular year, the estimated expected total loss, L, is found from 

 

   
1

0 11 1 1

x x xx

i i i

x ii i i

L g x y h y dy
 

   

       
        

       
     

( 23) 

 

In this expression, g(x) is a Poisson distribution and h(y) is derived from a Gamma distribution.  The 

expression can be simplified by noting that 

 

   
1

11 1 1

x x xx

i i i

ii i i

y h y dy xE y


  

       
       

       
    

( 24) 

 

This is because 

 

     
1

1i j j ij i ijy h y dy y E y 


    

( 25) 

 

Thus, 

 

       
0x

L xE y g x E x E y




   

( 26) 

 

All that remains is to evaluate E(x) and E(y).  E(x) is the expected value of the particular year’s 

Poisson distribution.  This is simply the Poisson parameter, im .  E(y) is the estimated expected value of 

the size of a catastrophe and can be found as outlined below. 

 

In Appendix F, it is concluded that the logarithm of the size of a catastrophe has approximately a 

gamma distribution.  Denoting this quantity by y, 

 

 
   1

, 0
1

y

y e
f y y




 

 
 
 


 
 

 

( 27) 

 

In order to find the distribution of the size of a catastrophe, the following transformation must be made. 
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 lny x  

( 28) 

 

Denoting the distribution of x by g(x), it is clear that 

 

   
dy

g x f y x
dx

  
   

  
 

( 29) 

 

since this transformation has a single valued inverse.  The calculations are carried out below. 

 

 
 

 

   

ln

1

ln
, 1

1

x

x e
g x x

x

 


 

 
  
 



   
 

 

( 30) 

 

It is the expected value of this distribution that is required. 

 

   
1

E x xg x dx



   

( 31) 

 

 
 

 

   

ln

1

1

ln

1

x

x e
E x dx

 


 

 
  

  



  
 

  

( 32) 

 

To evaluate this integral, use the transformation 

 

 lny x  

( 33) 

Then, 

 

      
1 0

dx
xg x dx x y g x y dy

dy

 
 

  
 

   

( 34) 
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( 35) 
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 
 
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1
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y e
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( 36) 
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
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 
 





 
 

  

 


  
   

 

  

( 37) 

 

The integrand in Equation ( 37) is a gamma distribution, so 

 

 
 

1

1

1
E x








 

( 38) 

 

This is the estimated expected value of the size of a catastrophe.  Substituting this result in Equation ( 26) 

provides the estimated expected total loss for a particular year. 

 

 
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1
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
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( 39) 
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( 40) 

 

 
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1
1

1

N

iN

i

m R
L R








 
  

  

 

( 41) 

 0 1
i

iL L R   

( 42) 

 

In making probabilistic predictions, the logarithms of the above estimates, iL , were treated as if 

they were the result of a two variable linear regression calculation with time as the independent variable.  

This treatment was suggested by the linear form of the logarithmic relationship and the least squares 

character of the method of minimum chi square.  All the predictions for a particular year consist of three 

numbers.  One represents the best estimate and is simply kL for the k’th year.  The other two numbers 

define an estimated confidence interval for the actual loss.  They are obtained from the following 

equations. 
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The upper and lower limits of the confidence interval are 

 

 
 

 

2

22

1

1
ˆln 1
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y y
L t

N
y y

e




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( 43) 

 

   
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1
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


 
      
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( 44) 

1

1 N

i

i

y y
N 

   

( 45) 

 

iy   Year i. 

 

2

t   The t value that cuts off 
2


 of the right tail of a t distribution with (N-3) degrees of freedom. 

 

iL   The estimated total loss in year i. 

 

AiL   The actual total loss in year i. 

 

Tables I contains the results of applying these equations to the estimated and actual losses for the years 

1953 to 1966. 

 

Equation ( 42) implies that the logarithmic form for estimating total loss is linear. 

 

     0ln ln ln 1iL L R i      

( 46) 

 

This suggests using a two variable linear regression as an alternative method of estimating future 

losses.  Tables II reflects this approach. 

 

The difference between Tables I and II is striking.  The estimated total losses in Table IIare 

considerably more consistent with actual total losses than those in the Table I.  In addition, the confidence 

intervals in Table II are much narrower.  The reason for these differences is that Table II reflects a more 

efficient estimation procedure for the parameters of the final log-linear model for total losses.  Thus, 

Table IIis more reliable than Table I. 
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Table I

90% Confidence Interval

Actual Estimated

Total Total Lower Upper

Year Loss Loss Limit Limit

1953 87.65 147.53 15.19 1432.60

1954 293.35 151.93 16.42 1405.92

1955 91.40 156.47 17.62 1389.74

1956 62.40 161.14 18.76 1384.27

1957 73.55 165.94 19.81 1389.89

1958 20.50 170.90 20.76 1407.14

1959 47.20 176.00 21.56 1436.73

1960 130.00 181.25 22.20 1479.61

1961 169.25 186.66 22.67 1536.90

1962 192.30 192.23 22.95 1610.01

1963 32.70 197.96 23.04 1700.63

1964 197.86 203.87 22.95 1810.76

1965 677.50 209.95 22.69 1942.80

1966 106.80 216.22 22.27 2099.57

1967 NA 222.67 21.70 2284.22

1968 NA 229.31 21.02 2501.25

1969 NA 236.16 20.25 2754.70

1970 NA 243.20 19.39 3050.15

1971 NA 250.46 18.48 3393.96

1972 NA 257.93 17.54 3793.53

1973 NA 265.63 16.57 4257.57

1974 NA 273.56 15.60 4796.21

1975 NA 281.72 14.64 5421.34
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Endnotes 

 

                                                 
i
 This was the definition the insurance industry used at the time.  The industry supplied the data used in the 

analysis. (Note that the current definition of a catastrophe has increased to $25.0 million.) 
ii
 Assuming a growing Poisson parameter for the number of catastrophes and a constant probability for the size 

of a catastrophe seems inconsistent.  This was done to simplify the computations so that they could be run 

more easily on the then available computers. 
iii

 Mood, Alexander and Franklin Graybill. Introduction to the Theory of Statistics. McGraw-Hill Book 

Company. Second Edition, 1963. 
iv
 This technique is described in sections 30.1 – 30.3 of Cramer, Harald. Mathematical Methods of Statistics.  

Princeton University Press. 1946. 
v
 Cramer describes this technique in sections 30.1 to 40.3 of Mathematical Methods of Statistics. 

Table II

90% Confidence Interval

Actual Estimated

Total Total Lower Upper

Year Loss Loss Limit Limit

1953 87.65 72.28 11.24 464.80

1954 293.35 76.59 12.39 473.50

1955 91.40 81.16 13.58 485.20

1956 62.40 86.00 14.78 500.30

1957 73.55 91.13 15.99 519.20

1958 20.50 96.56 17.19 542.50

1959 47.20 102.30 18.34 570.80

1960 130.00 108.40 19.43 604.90

1961 169.25 114.90 20.45 645.50

1962 192.30 121.70 21.37 693.60

1963 32.70 129.00 22.18 750.40

1964 197.86 136.70 22.86 817.10

1965 677.50 144.80 23.43 895.40

1966 106.80 153.50 23.87 987.00

1967 NA 162.60 24.18 1094.00

1968 NA 172.30 24.36 1219.00

1969 NA 182.60 24.44 1365.00

1970 NA 193.50 24.40 1534.00

1971 NA 205.00 24.27 1732.00

1972 NA 217.30 24.05 1963.00

1973 NA 230.20 23.75 2231.00

1974 NA 243.90 23.38 2545.00

1975 NA 258.50 22.96 2910.00
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vi
 Professor John Rolph of Columbia University suggested this method of classification.  It is not in accordance 

with the classification scheme outlined in Cramer, but does reflect the intent of that material.  Clearly, a low 

2  value will be achieved only if the model is consistent with the data. 
vii

 Professor John Rolph of Columbia University suggested this method of analysis.  It is an approximate 

treatment which should give reasonable results. 


