

Journal of Business and Social Science Review Issue: Vol. 2; No.12; December 2021 (pp.1-27) ISSN 2690-0866(Print) 2690-0874 (Online) Website: www.jbssrnet.com E-mail: editor@jbssrnet.com Doi: 10.48150/jbssr.v2no12.2021.a1

The Empirical Study of National Defense Expenditure and Economic Growth: A Game Theory Approach

Kuei-Hsien Niu California State University Sacramento 6000 J St, Sacramento, CA 95819 United States E-mail: niuk@csus.edu

1. INTRODUCTION

National defense expenditure refers to the grand total of resources that a country commits to the construction of national defense over a specific period of time. The fundamental issue that many studies on national defense expenditure tend to focus on is identifying the proportion of a country's total social economic resources (i.e., GDP) that is allotted to national defense construction and the ideal configuration of resource allocation. This has been the prevalent area for two reasons: 1) national defense expenditure has always been one of the government's largest expenditure items, and 2) it is useful to understand the correlation between national defense expenditure and economic growth in order to facilitate a balanced development of both the economy and national defense construction. However, the construction of an ideal growth scheme for national defense expenditure that facilitates the development of a country's economy and the construction of national defense has remained one of the untapped areas. So far, scholars fall into two major schools of thoughts on this subject. The first approach analyzes the correlation between economic growth and national defense expenditure by using historical data on economic growth and national defense expenditure to determine the quantitative correlation between the two and to identify the extent of the impact of national defense expenditure on economic growth (Barro, 1990). Another approach is the combination of longitudinal and transverse cross sections. This works by performing a transverse comparison on the historical data of a country's national defense expenditure with relevant historical data from other nations to deduce the growth model for national defense expenditure that exists.

While both approaches have their merits, neither is flawless. For example, many research conducted according to the former approach tends to focus on the externality of national defense expenditures. This is because the quantification of national defense while avoiding the analysis of the security benefits that national defense expenditure could bring is very difficult. As for the latter approach, it operates on the premise that the conclusions of relevant studies must be backed with a specific level of prevalence. Indeed, while both approaches are valuable, an approach has yet to be proposed that accurately reflects the development and demands for national defense security for a specific country at a specific period of time.

In this study, we examine data from Taiwan, South Korea, Japan, India, and Israel to attempt to fulfill the following objectives: 1) to construct a game-theoretic model to reveal the interactive relationship between the national defense expenditure and economy in both Taiwan and South Korea. The model should shed light on solutions that would allow decision making unit (DMUs) to minimize the impact of national defense expenditure on their economy while accommodating the demands for national defense and security within reasonable limits of resource allocation, 2) to further analyze the relative utilization efficiency for the national defense expenditure of seven DMUs to ensure that an efficient analysis can be made. We attempt to answer the following three research questions: 1) what is the ideal way to achieve balance between national defense expenditure and the cost of this to economic construction? 2) what is the more effective way of measuring the true value of national defense expenditure or the equilibrium solution? 3) can a model based on game theory and data envelopment analysis (DEA) be used together to provide a starting point for constructing a theoretical framework and an in-depth discussion of how to undertake an objective evaluation of the equilibrium between national defense construction, economic construction, and resource configuration?

We begin with the brief introduction, followed by the literature review. Data analysis and the discussion of results are then provided in the end.

2. THEORETICAL BACKGROUND

2.1 Defense expenditure, military threat, and economic growth

It is commonly believed that national defense expenditure is a non-productive cost that detracts from other valuable economic activities. Empirical studies have, however, demonstrated that there is a strong correlation between national defense expenditure and economic growth. Benoit (1978) discovered that national defense expenditure had positive effects on economic growth. His findings were replicated by many researchers such as Macnair et al. (1995), Brumm (1997), and Murdoch et al. (1997). Other studies have identified a negative correlation between national defense expenditure and economic growth (Mintz & Hung, 1990; Ward & Davis, 1992; Lipow & Antinori; 1995). It is argued that higher levels of spending on defense resulted in slower economic growth or even decline. Surprisingly, literature has revealed no significant correlation between national defense budget and economic growth (Mintz & Stevenson, 1995; Landau, 1996; DeRouen, 1995).

Research has found the relationship between defense expenditure and economic growth is highly complex. Deger and Sen (1995) revealed that national defense expenditure affected economic growth through supply and demand. Zou (1995) found that military threats from hostile nations had no long-term effect on domestic economic growth, while Chang et al. (1996) discovered that there was a correlation between an anticipated military threat from hostile nations and the development of domestic national defense.

Shieh et al. (2002a) empirically examined the impact from the factors of foreign military threat, government finance, and national defense expenditure, on a country's economic growth. They found that relative risk aversion is a critical variable that determines how the domestic economy's long-term equilibrium and short-term dynamic is affected by a foreign military threat. Shieh et al. (2002b) argued that national defense expenditure affects economic growth through three channels: the spin-off effect, crowding-out effect, and resource mobilization effect. By examining these three channels, they found that there was a positive correlation between threats from hostile nations and the long- and short-term health of a nation's economy. Aizenman and Glick (2003) posited that, as the military threat from hostile nations grows stronger, a country's national defense expenditure and long-term economic growth also develops at a rate that is directly proportional.

2.2 Defense expenditures and military capability

The military budget of a hostile nation has been found by some researchers to affect the budget assigned to defense in the country that is being approached in a hostile way. In their 2001 study, Chang et al. (2001) defined military defense capability as a country's capacity for defense and deterrence, while Klein (2004) contended that military capability is manifested as a nation's military strength and its capability to defend its sovereignty. Kollias et al. (2004) posited that the scale of a national defense budget depends on the hostility from other nations. Lambelet et al. (1979) and Brams (1985) believed that the degree of military capabilities ultimately affects the demands for national defense budget. Meanwhile, Burgess (1988) claimed that national defense budget planning is correlated to a military threat, while Cline (1980) conducted an empirical study to analyze the relationship between the defense budget of the offensive nation and that of the defensive nation.

3. METHODOLOGY AND DATA ACQUISITION

In this study, we use the game-theoretic model developed by Lai et al. (2005) to derive an appropriate formula for assessing national defense expenditure. The subsequent formula is then used to generate the national defense expenditure equilibrium solution for Taiwan and South Korea. In the end of this section, data envelopment analysis model (DEA model) is developed to examine the relative efficiency between national defense budget (input) and military capability (output).

3.2 Game theory

For the purpose of this study, we assume that the Nash equilibrium is the state of equilibrium between national economy and national security in a complete information static game. It functions under the premise that relevant governmental departments and the national defense department strive to prioritize economic growth, prioritize national security, or achieve balanced development between national defense and economy.

As indicated in table 1, there are two equilibrium solutions to the game. In this case, the equilibrium solution of "balance between national defense and economy" is the logical choice. During the process of the game, it became clear that the government would always opt to drive up national defense expenditure with minimum adverse impact on economic growth, despite the fact that both the government and national defense department tended to pursue the state's general strategic objectives. The military tended to opt for a solution that would achieve the highest satisfaction of the national defense security requirements. These tendencies shaped the state of balance for the game's equilibrium solution.

		Prioritize national defense over economy	Prioritize economy over national defense	Balancebetweennationaldefenseandeconomy
National	Prioritize national defense over economy	-1, <u>1</u>	-1,-1	-1, <u>0</u>
economy	Prioritize economy over national defense	<u>1,1</u>	<u>1</u> ,-1	<u>1</u> ,0
	Balance between national defense and economy	0, <u>1</u>	0,-1	<u>0,0*</u>

TABLE 1 Nash Equilibrium of National Defense Security and National Economy National defense security

3.3 Malmquist index

In recent years, the Malmquist index has become a popular approach to productivity measurement within the non-parametric literature. Caves et al. (1982) propose a Malmquist productivity index that is relative to a single technology ϕ^t (in (1)) or ϕ^{t+1} (in (2)), considering *n* decision making units (DMUs) in time period *t* that use inputs $X^t \in R^m_+$ to produce output $Y^t \in R^s_+$, as follows:

$$M_{o}^{t} = \frac{D_{0}^{t+1}(X^{t+1}, Y^{t+1})}{D_{o}^{t}(X^{t}, Y^{t})}$$
$$M_{o}^{t+1} = \frac{D_{0}^{t+1}(X^{t+1}, Y^{t+1})}{D_{o}^{t}(X^{t}, Y^{t})}$$

 $D_o^t(X^t, Y^t)$ is the output distance function, which is determined on the basis of technology ϕ^t as the reciprocal to the maximal feasible expansion of Y^t producible from input X^t . The values of M_o^t and M_o^{t+1} may be greater, equal, or smaller than one, depending on whether productivity growth, stagnation, or decline has occurred between periods t and t + 1. In general, M_o^t and M_o^{t+1} yield different productivity numbers since their reference technologies are different.

Färe et al. (1994) successfully applied the Malmquist index his study. The findings contributed significantly to the development of this index by relaxing the efficiency assumption and using DEA models (Charnes et al., 1978) for the calculation of the distance functions embodied in it. Note that an output distance function coincides with the DEA measure of technical efficiency. This development makes it far easier to implement linear programming models to compute the Malmquist index. Färe et al. (1994) defined the output-oriented productivity index as the geometric mean of the two Malmquist indexes referring to the technology at time periods t and t+1, (1) and (2) respectively, yielding the following Malmquist measure of productivity:

$$I^{t+1,t} = \left[\frac{D_0^t(X^{t+1}, Y^{t+1})}{D_0^t(X^t, Y^t)} \times \frac{D_0^{t+1}(X^{t+1}, Y^{t+1})}{D_0^{t+1}(X^t, Y^t)}\right]^{\frac{1}{2}}$$
$$I^{t+1,t} = \frac{D_0^{t+1}(X^{t+1}, Y^{t+1})}{D_o^t} \times \left[\frac{D_0^t(X^{t+1}, Y^{t+1})}{D_0^{t+1}(X^{t+1}, Y^{t+1})} \times \frac{D_0^t(X^t, Y^t)}{D_0^{t+1}(X^t, Y^t)}\right]^{\frac{1}{2}}$$

The ratio outside the bracket measures the technical efficiency change between time periods t and t + 1. The geometric mean of the two ratios inside the bracket captures the technological change (or shift in technology) between the two periods, evaluated by the input-output levels at t (X^t , Y^t) and at t + 1 (X^{t+1} , Y^{t+1}). Overall, improvements in productivity yield Malmquist indexes ($I^{t+1,t}$) with values that are greater than unity; conversely, declines in productivity yield Malmquist indexes ($I^{t+1,t}$) with values that are smaller than unity.

3.4 Data acquisition

The data used in the DEA estimation comprised of 336 observations from seven DMUs over 48 years. The DEA model can evaluate the relative efficiency scores of these DMUs by linear programming based on selected variables. Therefore, the interpretation and efficiency scores are affected by the selection of inputs and outputs. To ensure the validity of the research both data availability (an empirical criterion) and a literature survey are used in the study (See Table 2, Figure 1).

	TWN	KOR	TWN-E	KOR-E	JAPAN	INDIA	ISRAEL
Population & National income	23,119,772 USD31,90 0	49,044,79 7 USD 19,231	23,119,772 USD 31,900	7	127,767,94 4 USD33,80 0	1,147,995,89 8 USD3,737	7,370,000 USD26,200
Military threat	From China	From North Korea	From China	From North Korea		From Pakistan, China and Bangladesh	Lebanon, Syria, Jordan and Egypt
Economy	Export oriented	Export oriented	Export oriented	Export oriented	Highly developed economy	The primary output nation for information industry	•
Geographi cal location	located to the east of Asia and		An island located to the east of Asia and northwest Pacific Ocean	part of the Korean		nation in Southern Asia	Surrounded by Lebanon (north), Syria, Jordan (east) and Egypt (southwest)
Colonial history			Under Japanese rule from 1896-1945		Defeated during WWII; under Allied occupation until 1952.	Under British rule as a colony from 1849-1950	people were

TABLE 2 Decision Factors for DMUs

Figure 1. Geographical location of DMUs

3.5 Data and Input-output variables descriptions

In this study, the model developed by Lai et al. (2005) is adopted to derive the formula for national defense expenditure in order to formulate the national defense expenditure equilibrium solution for Taiwan and South Korea between 1961 and 2008. Next, the Malmquist index from the DEA model is used to examine the relative efficiency between national defense budget (input) and military capability (output). The relative efficiencies of Taiwan, South Korea, Japan, India, and Israel between 1961 and 2008 are then compared. Definitions of relevant variables and research framework are shown in Table 3 and Figure 2.

TABLE	TABLE 3 Definition	on of Variables					
Туре	Variable	Indicator	Definition	Source			
Game model	Taiwan and S Korea's actual G	South DP	GDP is the basic measure of a countr overall economic output. It is important indicator of a coun (region)'s economic status.	conomic output. It is an OECD indicator of a country Database			
Game model	Taiwan and S Korea's labor for	South ce	The population of people above years of age and ready for employme including the employed a unemployed.	ent, OECD			
Game model	Taiwan and S Korea's actual ca deposit	South apital CAPITAL	Capital deposit or deposit capital. Fr the perspective of corporate cap operation, it refers to all existing cap resources in a corporation's possessio	ital OECD ital Database			

Game model			Annual national defense budget tha Γgoes to technology R&D	OECD Database
Game model	Taiwan and Sout Korea's nationa defense expenditure	h 1 Military Budgets	True value of national defense expenditure from each fiscal year	Military Balance
DEA Input	Military Budgets	Military Budgets	The true value of each nation's annua national defense expenditure Equilibrium solution to Taiwan and South Korea's national defense expenditure game	- Military Balance
DEA Output	Military Capability	Defensive military strength Organizational structure ratio	 No. of active troops / Area of territory No. of troops in the navy and air force. No. of active troops 	_Military / Balance

Source: Compiled by the author

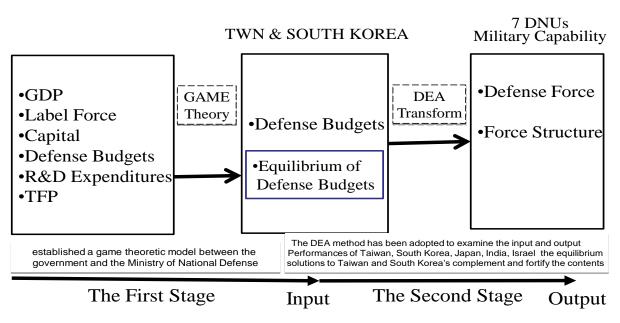


Figure 2 The Research Framework

4. MODEL DERIVATION

4.1Analysis of the national defense capital model

From an economic perspective, the effective military deterrence capability (S_t) of an army comes from two primary components: the capital deposit of its national defense (M_t) (including weaponry, equipment, and human resources), and military management and operational knowledge (KM_t) (including military tactic theories and organizational systems). This can be represented as the function: St = F (M_t , KM_t). Let r_t be the percentage of national defense technology research and investment in national defense expenditure and R_t be the proportion of national defense budget demand in the GDP. Since national defense technology research and investment is usually excluded from the calculation of national defense capital increment, ergo the formula for national defense capital may be represented as follows:

$$M_{t} = M_{t-1} + Y_{t}R_{t}(1-r_{t}) - \lambda \sum Y_{t-i}R_{t-i}(1-r_{t-i}) \quad (i = 1, 2, \cdots),$$

where λ represents the rate of depreciation. With this established, we can represent the national defense security production function as follows:

$$S_{t} = F \Big[M_{t} = M_{t-1} + Y_{t} R_{t} (1 - r_{t}) - \lambda \sum Y_{t-i} R_{t-i} (1 - r_{t-i}), K M_{t} \Big]$$
(1)

4.2 National defense expenditure and economic growth

From the theoretical perspective of production function, national defense expenditure will boost TFP. Using the Cobb-Douglas Production Function $Y_t = AK^{\alpha}L_t^{\beta}$ as the basis, we can derive the following formula for the economic growth rate:

$$\Delta Y/Y_t = \Delta A/A_t + \alpha \,\Delta K/K_t + \beta \,\Delta L/L_t \tag{2}$$
Let $\Delta Y/Y_t = y_t, \Delta A/A_t = a_t, \Delta K/K_t = k_t, \Delta L/L_t = l_t$
Then, $y_t = a_t + \alpha k_t + \beta l_t$

Let the annual national defense budget be $D_t = Y_t R_t$; then, the comprehensive effect of the national defense expenditure on economic growth can be represented as follows:

$$y(D_t) = a(D_t) + \alpha k(D_t)$$
(3)

(3) The actual format for equation (3) can also be represented as follows:

$$y(R_t, r_t) = a(r_t) + \alpha k(R_t, r_t)$$

Where a (r_t) is obtained from the production function $Y_t = AK^{\alpha}L_t^{\beta}$ and the TFP for technical advancement refers to the productivity of a set of traditional input, it can be computed using the following formula:

$$TFP = Y/(K^{\alpha}L^{\beta}) \tag{4}$$

By using the growth rate formula to modify equation (2), we get the following:

 $g_{TFP} = y - ak - \beta l \tag{5}$

In his study on endogenous growth theory, Gerace (2002) perceived endogenous technical advancement as the primary proponent of economic growth; with this in mind, we also propose the following: $g_{TFP} = \Omega(RD/Y)$

(6)

Equation (6) is derived under the premise where knowledge capital depreciation is overlooked, and the assumption that the net change (*dA*) in the deposit of knowledge capital is equivalent to the sum of investment for research and development (R&D), where $\Omega \equiv (dY/dA)$ represents knowledge capital's marginal productivity. Likewise, let r_t represent the proportion of the national defense expenditure taken up by R&D; if we assume Ω_1 to be the marginal productivity for national defense R&D investment, then $RD = Y_t R_t r_t$ and a (r_t) may be represented as follows:

$$\mathbf{a}(r_t) = \Omega_1 (Y_t R_t r_t) / Y_t = \Omega_1 R_t r_t.$$

National defense expenditure capital deposit K_t is derived from prior capital deposit K_{t-1} and the net investment function I_t . In this paper, the following formula has been chosen for the derivation of capital deposit:

$$K_t = K_{t-1} + I_t - \lambda \sum I_{t-i} \qquad (i = 1, 2, \cdots),$$
(7)

where λ stands for the rate of capital depreciation. From equation (7), the decrement in capital assets in year t caused by national defense expenditure can be represented as follows: $\Delta K_t = I_t + (1 - \lambda) \sum I_{t-i} = a Y_t R_t (1 - r_t) + a (1 - \lambda) \sum_{i=1,2,\cdots} Y_{t-i} R_{t-i} (1 - r_{t-1})$

thus,
$$\alpha k(R_t, r_t) = \left[aY_t R_t (1 - r_t) + a(1 - \lambda) \sum_{i=1,2,\cdots} Y_{t-i} R_{t-i} (1 - r_{t-1}) / k_t \right]$$
.

In economics, the assessment of factors' contribution to economic growth is usually represented as a contribution rate. In this case, the contribution rate of national defense expenditure to economic growth can be represented as $e_D = y(R_t, r_t)/y_t$, and therefore,

$$e_{D} = y(R_{t}, r_{t}) / y_{t} = \Omega R_{t}(1 - r_{t}) / y_{t} - \left[aY_{t}R_{t}(1 - r_{t}) + a(1 - \lambda) \sum_{i=1,2,\cdots} Y_{t-i}R_{t-i}(1 - r_{t-1}) / k_{t}y_{t} \right]$$

4.3 Model derivation

Let us assume that a government's goal is to satisfy fundamental national defense security demands so that national defense expenditure can provide the greatest comprehensive contribution to economic development. Let us also assume that as the principle party responsible for national defense expenditure and the provider of national defense security, a national defense department is primarily interested in maximizing national defense security. Let π be the ratio of national defense expenditure against overall financial spending for LDCs, π_0 be the ratio of minimum expenditure for people's livelihoods, R_0 be the ratio of minimum national defense expenditure, and r_0 be the basic military expenditure and maintenance spending.

The increase in a nation's defense budget has been found by a number of studies to be intricately related to the demands for military equipment development. This is especially true for nations that are actively pursuing weaponry upgrade (e.g., Taiwan); the national defense budget increase for such nations will depend on the equipment that is purchased and relevant R&D. Thus, the government has a binding power over the national defense budget R_t and the relevant R&D r_t proposed by the national defense department.

Let the binding function be $R_t = \mu r_t + R_0$ (8)

Equation (8) represents the basic national defense budget that a national defense department will receive when it does not take part in weaponry/equipment development (including R&D investment). In order to derive the maximum national defense security output, the optimized strategy function may be represented as

$$Max \{S_{t} = F [M_{t} = M_{t-1} + Y_{t}R_{t}(1 - r_{t}) - \lambda \sum Y_{t-i}R_{t-i}(1 - r_{t-i}), KM_{t}]\}$$

s.t. $R_{t} = \mu r_{t} + R_{0}$
 $R_{0} < R_{t} < \pi - \pi_{0}$
 $0 < r_{t} < 1 - r_{0}.$ (9)

On the other hand, in order for a government to facilitate economic growth, the optimized strategy function may be represented as

$$Max \left\{ \Omega R_{t} (1-r_{t}) / y_{t} - \left[aY_{t}R_{t} (1-r_{t}) + a(1-\lambda) \sum_{i=1,2,\cdots} Y_{t-i}R_{t-i} (1-r_{t-1}) / k_{t} y_{t} \right] \right\}$$
(10)
s.t. $R_{t} = \mu r_{t} + R_{0}$
 $R_{0} < R_{t} < \pi - \pi_{0}$
 $0 < r_{t} < 1 - r_{0}$

By satisfying the government's demands—as represented in equation (10)—we can derive the function of equilibrium for both the government and national defense department. We assume the first order derivative condition to be 0 for r_t in equation (9).

 $\partial S / \partial r_t = (\partial F / \partial M_t) (\partial M_t / \partial r_t) + (\partial F / \partial M_t) (\partial KM_t / \partial r_t) = (\partial F / \partial M_t) Y_t (\mu + R_0 + 2\mu r_t) = 0$ We then get $r_t = (\mu - R_0) / 2\mu$; by plugging $r_t = (\mu - R_0) / 2\mu$ into $R_t = \mu r_t + R_0$, we arrive at $R_t = (\mu + R_0) / 2$. By plugging in $b_t = \Omega_1 / y_t$; $c_t = \alpha Y_t$; $d_t = \alpha \{(1 - \lambda) \sum Y_{t-i} R_{t-i} (1 - r_{t-i})\} / K_t y_t$ $(i = 1, 2, \cdots)$, we get $\varphi(R_t, r_t) = (b_t + c_t) R_t r_t - c_t R_t - d_t$. (11) By converting equation (11) into a function for μ , we get the following function: $\varphi(\mu) = 0.25(b_t + c_t) (\mu - R^2 / \mu) - 0.5c_t \mu - 0.5c_t R_0 - d_t$ (12) If we let the first-order condition for the previous equation be 0, we get the following function:

$$\partial \varphi(\mu) / \partial \mu = 0.25(b_t + c_t)(\mu - R^2 / \mu) - 0.5c_t = 0$$

We can then obtain the solution $\mu = [(c_t + b_t)/(c_t - b_t)]^{1/2} R_0$.

With an incentive scheme, the equilibrium solution for national defense budget and economic construction would be

$$r_t^* = \frac{1}{2} - \frac{1}{\left[4(c_t + b_t / c_t - b_t)\right]^{1/2}}$$
(13)

$$R_t^* = \left[\frac{(c_t + b_t)}{(c_t - b_t)} \right]^{1/2} + 1 R_0 / 2.$$

If we ignore the range of change during the span of two consecutive years, we can represent the growth rate for national defense budget as follows:

 $\upsilon_t = Y_t R_t^* / Y_{t-1} R_{t-1}^* - 1.$

By substituting the equilibrium solution $r_t^* = \frac{1}{2} - \frac{1}{\left[4\left(c_t + b_t/c_t - b_t\right)\right]^{1/2}}$ and $R_t^* = \left[\frac{c_t + b_t}{c_t - b_t}\right]^{1/2} + \frac{1}{R_0} + \frac{1}{2}$ back into the original equation, we will be able to derive the growth rate for national defense budget as follows:

$$\upsilon_{t} = (1 + y_{t}) \left[\left[(c_{t} + b_{t}) / (c_{t} - b_{t}) \right]^{1/2} + 1 \right] / \left[\left[(c_{t-1} + b_{t-1}) / (c_{t-1} - b_{t-1}) \right]^{1/2} + 1 \right] - 1.$$
(14)

5. EMPIRICAL ANALYSIS OF THE MODEL

5.1 Marginal productivity Ω_1 of national defense R&D investment

Now that we have established the model $Y_t = AK^{\alpha}L_t^{\beta}$, we may begin to apply it to calculate Taiwan's and South Korea's capital output elasticity α and labor output elasticity β before computing the results for $TFP = Y/(K^{\alpha}L^{\beta})$.

By adopting the model $LnY = b + aLnK + \beta LnL + \mu$ for the regression analysis, we can derive both α and β for Taiwan, as follows:

$$LnY = 2.420 + 0.439 LnK + 0.346 LnL + 0.350 D_{1.136}$$

$$R^{2} = 0.899 Significance - F = 148.840.$$

When this model is applied to South Korea, the capital output elasticity α and labor output elasticity β are found to be as follows:

$$LnY = -18.1 + 0.211 LnK + 4.726 LnL + 0.268 D_{1.623}$$

R² = 0.979 Significance-F=650.670

	Unstandardized Coefficients		Standardi zed Coefficie nts			Correlations			Collinearity Statistics		
Model		В	Std. Error	Beta	Т		Zero- order	Partial	Part	Toleran ce	VIF
1	(Consta nt)	2.420	1.009		2.398	.020					
	LCAPI TAL	.439	.078	.555	5.601	.000	.926	.621	.251	.205	4.882
	LLABL E	.346	.180	.284	1.917	.061	.914	.262	.086	.092	10.868
	D	.350	.266	.148	1.316	.194	.852	.183	.059	.160	6.245

Unstandardized Coefficients Std. B Error			Standardi zed Coefficie nts			Correlations			Collinearity Statistics		
		В		Beta	Т		Zero- order	Partial	Part	Toleran ce	VIF
1	(Consta nt)	2.420	1.009		2.398	.020					
	LCAPI TAL	.439	.078	.555	5.601	.000	.926	.621	.251	.205	4.882
	LLABL E	.346	.180	.284	1.917	.061	.914	.262	.086	.092	10.868
	D	.350	.266	.148	1.316	.194	.852	.183	.059	.160	6.245

TABLE 4 TWN Coefficients^a

a. Dependent Variable:

LGDP

TABLE 5 TWN Model Summary

				Std. Error Change Statistics						
Mod el	R	R Square	Adjusted R	of the	R Square		df1		Sig. Change	F
1	.948ª	.899	.893	.39054	.899	148.840	3	50	.000	

a. Predictors: (Constant), D, LCAPITAL,

LLABLE

TABLE 6 KOREA Coefficients^a

Unstandardized		Standardi zed Coefficie nts			Correlat	ions		Collinea Statistic	-		
		В		Beta	Т		Zero- order	Partial	Part	Toleran ce	VIF
1	(Consta nt)	-18.100	1.268		- 14.270	.000					
	LNK	.211	.125	.063	1.687	.099	.790	.252	.038	.356	2.807
	LNL	4.726	.317	.877	14.901	.000	.988	.917	.334	.145	6.909
	D	.268	.165	.073	1.623	.112	.855	.243	.036	.251	3.983

a. Dependent Variable:

LNY

TABLE 7 KOREA Model Summary

-				Std. Error	Change Statistics					
Mod e	R	R Square	Adjusted R Square	of the	1		df1		Sig. Change	F
1	.989ª	.979	.977	.27847	.979	650.670	3	42	.000	

a. Predictors: (Constant), D, LNK,

LNL

From these equations, it is apparent that the model generates relatively accurate estimates for match and coefficient significance. We can therefore establish that during the period between 1956 and 2009, Taiwan's capital output elasticity $\alpha = 0.439$ and its labor output elasticity $\beta = 0.346$, whereas during the period between 1961 and 2008, South Korea's $\alpha = 0.138$ and $\beta = 5.127$. In contrast, Japan's capital output elasticity $\alpha = 0.317$ and labor output elasticity $\beta = 10.650$ between 1961 and 2009. If we substitute α and β from Taiwan and Korea into the formula $TFP = Y/(K^{\alpha}L^{\beta})$, we are then able to calculate the three countries' TFP growth rate from 1956 (or 1961) to 2009, as shown in Table 8:

YEAR	Taiwan TFP	Korea TFP	YEAR	Taiwan TFP	Korea TFP	YEAR	Taiwan TFP	Korea TFP
1957	0.009896	N/A	1974	- 0.008400	0.001876	1991	0.005441	0.012674
1958	0.013687	N/A	1975	- 0.006950	0.001989	1992	- 0.001860	0.013552
1959	0.043149	N/A	1976	0.017222	0.002576	1993	0.003498	0.023820
1960	0.309356	N/A	1977	- 0.199310	0.003119	1994	0.001768	0.027191
1961	- 0.299710	N/A	1978	0.138126	0.004244	1995	0.006231	0.028615
1962	0.006221	0.000455	1979	0.002583	0.005232	1996	0.007995	0.029561
1963	- 0.000530	0.000721	1980	- 0.000170	0.005501	1997	0.000349	0.029903
1964	0.015206	0.000787	1981	0.006737	0.006450	1998	7.57E-05	0.030825
1965	- 0.000290	0.000779	1982	0.005539	0.006732	1999	0.004597	0.029822
1966	- 0.001640	0.000727	1983	0.012291	0.007061	2000	0.003263	0.031987
1967	- 0.001260	0.000778	1984	0.013269	0.007394	2001	0.011468	0.032786
1968	- 0.001480	0.000814	1985	0.010656	0.008055	2002	0.004547	0.041107
1969	0.002606	0.000987	1986	0.007527	0.008787	2003	0.005446	0.043515
1970	0.008217	0.001022	1987	0.006985	0.007861	2004	- 0.004080	0.048496
1971 1972 1973	0.003073 0.008428 0.011758	0.001213 0.001231 0.001466	1988 1989 1990	0.000839 0.003201 0.001867	0.009297 0.010994 0.011099	2005 2006 2007	0.000846 0.008457 0.006893	0.055175 0.033637 0.036223

TABLE 8 Growth rate of Taiwan and South Korea's TFP over the years

5.2 Estimation of national defense research and development budget weighting (R_{t}) in the GDP

5.3 Data correction and estimation

Given that Taiwan's period of national defense technology R&D reform did not take place until 1980, when we calculate the marginal productivity of Taiwan's national defense R&D investment, we will perform the regression analysis on data collected prior to 1980. Let M_t be Taiwan's annual national defense R&D budget, and $M_t = R_t r_t + (R_2/Y)_t$. We can modify equation (9) as follows:

$$g_{TFP} = \mathbf{a} + b_i M_{t-i} + cD_t + \mu \tag{16}$$

In this equation, D_t represents the impact of major state policies on technological advancement, and it exists in the model as a dummy variable (prior to 1980, $D_t = 0$ and after 1980, $D_t = 1$) and u represents. Let the actual national defense R&D budget be RM_t ; then, plug 0.28735 as the value for the national defense R&D budget back into the regression formula; this gives the following results: $g_{max} = a + bR r + cD + u$

$$g_{TFP} = 0.029 - 1.083 R_t r_t + 0.005 D$$
$$_{16.250} - 4.788 R_t r_t + 0.005 D$$

 $R^2 = 0.560$ and the t-value for the variable $R_t r_t = -4.788$, which indicates significance. Therefore, we have derived the value of marginal productivity for Taiwan's national defense R&D to be -1.083. The t-value for political factor D is at 1.215, which indicates a positive impact on technological advancement, although the impact is relatively weak.

-		D	Adjusted D	Std Emon of	Change Statistics					
Model	R		5	Std. Error of the Estimate	R Square	F Change	df1	df2	Sig. F Change	
1	.748ª	.560	.516	.003483396	.560	12.709	2	20	.000	

Predictors: (Constant), D, Rtrt

TABLE 10 TWN Coefficients^a

				Standardized Coefficients			Correlations			Collinearity Statistics	
IV.	lodel	к	Std. Error	Beta	l	Sig. Z		Partial	Part	Tolerance	VIF
	(Constant)	.029	.002		16.250	.000					
1	Rtrt	-1.083	.226	840	-4.788	.000	726	731	710	.716	1.397
	D	.005	.004	.213	1.215	.239	234	.262	.180	.716	1.397

a. Dependent Variable:

TFP

In 1982, owing to the petroleum energy crisis, South Korea's former president Chun Doo-Hwan saw the need to develop the country's hi-tech sectors. Therefore, 1982 is chosen as the dividing point for South Korea.

 $g_{TFP} = \mathbf{a} + b_i M_{t-i} + cD_t + \mu$ $g_{TFP} = 0.00001677 - 0.00062 R_t r_t + 0.000003089 D_{-1.228}$

(17)

 $R^2 = 0.280$ and the t-value for the significance test for the variable $R_t r_t$ are found to be -1.228. Although this is insignificant, it is still safe to assume that the variable has a specific level of influence. From this finding, we have derived the value of marginal productivity for South Korea's national defense R&D to be -0.00062. The t-value for political factor D in Korea's case is at 2.837, which suggests a relatively weak positive impact on technological advancement.

INDEE II	HOLIGI Coefficient	5	
	Unstandardized	Standardized	
	Coofficients	Coofficients	

TABLE 11 KOERA Coefficients^a

		Unstanda Coefficier		Standardized Coefficients			Correlations			Collinearity Statistics	
Model	l	В	Std. Error	Beta	t	Sig.	Zero- order	Partial	Part	Tolerance	VIF
1	(Constant)	1.677E-8	.000		8.612	.000					
	Rtrt	-6.200E- 7	.000	180	-1.228	.226	385	182	157	.759	1.318
	D	3.089E-9	.000	.417	2.837	.007	.505	.393	.363	.759	1.318

a. Dependent Variable: TFP

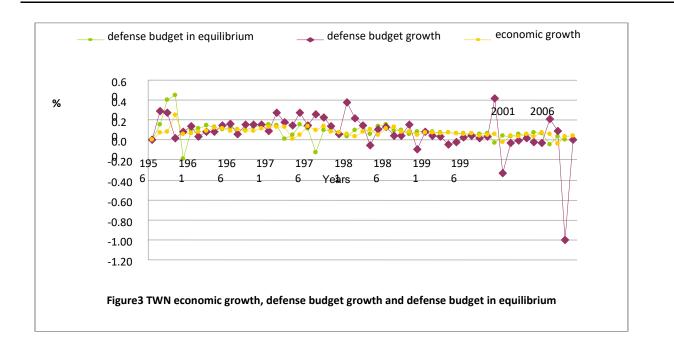
TABLE 12	KOERA	Model	Summary
----------	-------	-------	---------

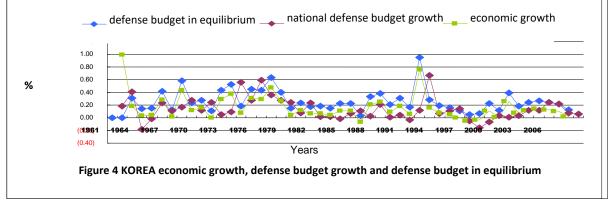
Model R	R	Adjusted	Std.	Error	of	the	Change Statistics
---------	---	----------	------	-------	----	-----	-------------------

		Square	R Square	Estimate	R Square Change		df1		Sig. Change	F
1	.529 ^a	.280	.247	.00000003214433	.280	8.557	2	44	.001	

By substituting original data into equation $y_t = (Y_t / Y_{t-1}) - 1$, we can calculate the true economic growth rate and growth rate of the national defense budget for Taiwan and South Korea under equilibrium.

TABLE 13 TWN and KOERA's economic growth, defense budget growth and national defense budget
in equilibrium


in equ	ilibrium						
YEA R	TWN economic growth	TWN defense budget growth	TWN defense budget in equilibrium growth	YEA R	KOREA economic growth	KOREA defense budget growth	KOR defense budget in equilibrium growth
1957	0.07254591 7	0.290863891	N/A	1957	N/A	N/A	N/A
1958	0.08298941 2	0.272026962 >	0.152587780	1958	N/A	N/A	N/A
1959	0.25003017 6	0.021953066 <	0.401285100	1959	N/A	N/A	N/A
1960	0.06203357 6	0.085555556 <	0.448308010	1960	N/A	N/A	N/A
1961	0.06316145	0.141589901	-0.189424230	1961	N/A	N/A	N/A
1962	0.07903700 3	0.038254632 <	0.095756520	1962	0.99018567 6	0.181818182 0	N/A
1963	0.09353933 7	0.078583765 <	0.113319234	1963	0.18060109 3	0.407692308 >	0.3054606894
1964	0.12198940 2	0.083800374 <	0.148879618	1964	0.03143765 5	- 0.185792350 <	0.1405177040
1965	0.11135000 0	0.148731839	0.130432695	1965	0.04109589 0	- 0.020134228 <	0.1511965774
1966	0.08913216 0	0.163879957 >	0.103818020	1966	0.28205128 2	0.232876712	0.4176342859
1967	0.10711247 1	0.059397735 <	0.126187210	1967	0.01400000	0.111111111 1 <	0.1212359763
1968	0.09170727 3	0.155163421	0.104627261	1968	0.43269230 8	0.170000000	0.5842059706
1969	0.08948375 7	0.156369930	0.097133438	1969	0.11744966 4	0.273504274	0.2356260458
1970	0.11370889 3	0.155658229	0.130563942	1970	0.15650534 3	0.117449664 <	0.2788111432
1971	0.12895105 9	0.092234923 <	0.145911640	1971	0.00402576	0.243243243	0.1102055473
1972	9 0.13317167 4	0.274836315	0.150889331	1972	0.29582577 1	> 0.050724638 <	0.4328658957
1973	0.12832720 4	0.175226464	0.143780371	1973	0.37756497 9	0.094252874	0.5232490649
1974	0.01162050 3	0.147482881	0.010176734	1974	0.07153427 4	0.558823529	0.1848541082
1975	0.04928388 6	0.271868534	0.053163510	1975	0.30845277 6	0.270889488	0.4468274023
1976	0.13860614 8	0.143870983 <	0.152885964	1976	0.29277948 7	0.590668081	0.4294967868


	0.10100.005				0.45644005	0.05500000	
1977	0.10189685 9	0.261094507 >	0.111211641	1977	0.47644227 4	0.355333333 <	0.632582664
1978	0.13593916 0	0.222974077 >	-0.130110624	1978	0.26741193 8	0.272011805 <	0.401446441
1979	0.08173943 4	0.136440180	0.100867603	1979	0.04045061 4	0.244779582	0.1504827962
1980	0.07301225	0.058777181 <	0.089224417	1980	0.11694173	0.078285182	0.235063075
1981	0.06162692	0.380613344	0.076521832	1981	0.06592765	0.234514549	0.178654066
1982	0.03551231 2	0.216423434	0.035240087	1982	0.06642468 2	0.015169195	0.179203630
1983	2 0.08446908 7	0.145530063	0.099291801	1983	0.03783122 8	< 0.013103448 <	0.147586300
1984	0.10599657 1	-0.056096026 <	0.137146334	1984	0.10748459 9	- 0.016791468	0.224605803
1985	0.04952510 1	0.103005132 >	0.056707013	1985	0.10517204 1	< 0.066466651 <	0.222048685
1986	0.11637017 5	0.129620079 <	0.137396495	1986	- 0.06771235 9	0.105172041 >	0.030881022
1987	0.12744865 8	0.044422953 <	0.157953231	1987	0.20885227	0.021930683 <	0.336693472
1988	0.07840426	0.040418331	0.093708566	1988	0.24973640	0.208852271	0.381901374
1989	0.08232473	0.152849121	0.100388592	1989	0.09047333	0.008559201	0.205795545
1990	0.05394976 4	-0.091632639 <	0.062451923	1990	0.18594411 8	0.043061449 <	0.311362731
1991	0.07553958 2	0.082084047 <	0.086313290	1991	0.05755148 7	- 0.029682085	0.169392049
1992	0.07487459	0.045174743	0.084275142	1992	0.76107015 3	0.116304348	0.947310761
1993	0.07013832 7	0.033468494 <	0.082005017	1993	0.16094410 8	0.668382251	0.283718926
1994	0.07108023 5	-0.046310684	0.076838609	1994	0.07818635	0.064198766 <	0.192209106
1995	0.06424046	-0.024095919	0.073199733	1995	0.04808214	0.110858665	0.158921246
1996	0.06102250 9	0.024107901 <	0.070445851	1996	0.00236387 4	0.140559983 >	0.108368071
1997	0.06366714 2	0.040602237 <	0.067732993	1997	- 0.04723637 5	- 0.051817957 <	0.053522383
1998	0.04329444 1	0.022551187 <	0.048508201	1998	- 0.03470376 1	- 0.156123647 <	0.067380373
1999	0.05319140 2	0.035529984 <	0.057850582	1999	0.10759194 5	- 0.065842349 <	0.224724447
2000	0.05781147 4	0.416180218 >	0.063874417	2000	0.01072343 1	0.033752482	0.117611693
2001	- 0.02224000 2	-0.330831061 >	-0.025733376	2001	0.26076629 1	0.010723431 <	0.394097628

3

>

2002	0.03944494 6	-0.032263687 <	0.043448314	2002	0.07197056 6	0.035629454 <	0.1853359783
2003	0.03334986 0	-0.008641403 <	0.035702656	2003	0.12077096 6	0.118577982 <	0.2392972118
2004	0.05698575 4	0.020398302 <	0.061819889	2004	0.14346027 2	0.120770966 <	0.2643860083
2005	0.03658077 7	-0.018024434	0.039277152	2005	0.12660084	0.238748628	0.2457436203
2006	0.07187411 7	-0.026340865	0.077778525	2006	0.10246374 4	0.213262443	0.2190539232
2007	0.06026139 3	0.210544041 >	0.064996197	2007	0.02023469 2	0.078839521	0.1281288010
2008	- 0.03869713	0.092862193	-0.043577266				

5.4 Results

In the 52 years between 1957 and 2008, Taiwan's true national defense expenditure growth rate was greater than that of the equilibrium solution for a period of 23 years (see Table 12 and Figure 3). This suggests that Taiwan's actual national defense expenditure did not exceed the reasonable limit for social economic development. It is not noting that Taiwan's economic growth from 1961 to 2000 has grown consistently.

This validates the fact that Taiwan's actual national defense expenditure from 1961 to 2000 has allowed the nation to construct solid and sound national defense security, which in turn, has supported the nation's economic growth. In addition, this finding also renders the notion that the increase in Taiwan's national defense budget has been detrimental to the country's economic development owing to "crowding out," as invalid.

For ten years, South Korea's actual national defense expenditure was higher than that of the equilibrium solution (see Table 12 and Figure 4). This shows that South Korea's DMU has been more effective than Taiwan's in terms of national defense resource utilization.

Overall, it is clear that, with the exception of 2001, Taiwan has enjoyed positive economic growth with a relatively high average growth rate of 13.90%. In the period between 1954 and 2005, South Korea witnessed an impressive average GDP growth rate of 21.14%. Just like Taiwan, South Korea's GDP has also shown steady growth since1987.

5.5 Descriptive statistics for input and output variables

From the process of model derivation, we have identified one input variable (annual national defense budget expenditure) and two output variables (defensive military strength and organizational structure ratio). As the sample set of seven DMUs was chosen and the research focused on a period that spanned 48 years, the analysis clearly adheres to the rule of thumb that the number of DMUs must be at least 200% greater than the sum of the input and output items (Galvin, 2003). In this paper, we have performed the Pearson correlation coefficient analysis on the I/O items used in the model to examine their isotonicity. An I/O item has to be removed if the coefficient turns out to be negative. However, as Table 14 makes clear, all the relevant coefficients in our analysis are positive. This means that the set of I/O items are adequately isotonic.

	(Input) National defense budget	(Output) Defensive military strength	(Output) Military strength organizational structure ratio
Max.	4029.67	18.889	0.617
Min.	1.10	0.166	0.051
Mean	523.5509	5.23016	0.24297
Std	926.71852	4.989647	0.117053

TABLE 14 Table of descriptive statistics for input and output variables

TABLE 15 Table of descriptive statistics for input and output variables

	National	defense	Defensive	military	Military	strength
	budget		strength		organizationa	l structure ratio
National defense budget	1		0.491		0.569	
Defensive military strength	0.491		1		0.450	
Military strength organizational structure ratio	0.568		0.450		1	

5.6 Analysis on changes in productivity

In this paper, we analyze the changes of TE for the subjects. Change in TE can be categorized even further into change in pure technical efficiency (PTE) and change in scale efficiency (SE). After covering these changes, we analyze the change in technical reform, before moving on to conduct an analysis of TFP change (Malmquist Productivity Index) to attempt to identify the causes that led to TFP decline.

5.7 Analysis on changes in efficiency

5.7.1 Technical efficiency

The changes in PTE and SE reflect the changes that have taken place in the subject DMUs during the time span examined. If a subject's overall efficiency = 1, then the subject should be regarded as relatively efficient. If the value is smaller than 1, then the subject in question should be regarded as relatively inefficient. In terms of the TE of national defense expenditure for Taiwan, Taiwan's equilibrium solution, South Korea, South Korea's equilibrium solution, Japan, India, and Israel,

It was India that was found to have the most efficient TE performance (1.042), followed by Japan (1.032), and Israel (1.000). These three countries showed improvement in their efficiency during this time period, while the remaining DMUs showed decline. The technical inefficiency of Taiwan and its equilibrium solution stems from its insufficient TE, while both TE and PTE meant that South Korea's equilibrium solution were inefficient. (see Table 16).

DMU	TE	TC	PTE	SE	TFP
TWN	0.979	0.928	1.005*	0.973	0.908
TWN-E	0.973	0.928	1.005*	0.973	0.903
KOR	0.973	0.931	0.977	0.995	0.905
KOR-E	0.982	0.931	0.986	0.995	0.914
JAPAN	1.032*	0.921	1.007*	1.025*	0.951
INDIA	1.042*	0.921	1.037*	1.005*	0.960
ISRAEL	1.000*	0.923	1.000*	1.000*	0.923
Mean	0.997	0.926	1.002*	0.995	0.923

TABLE 16 Various efficiency change	TABLE 16	Various efficie	ncv changes	5
---	----------	-----------------	-------------	---

5.7.2 The change in catch-up effects

TE reflects the relationship between input production factors and mass production (i.e., how to maximize mass production under given production factors or minimize input production factors under specific mass production target). In other words, the value of TE reflects the correlation between overall efficiency and management decisions. We can use TE to assess whether the DMUs in our analysis were able to achieve maximum output with minimal input to produce maximum output (a value of 1 denotes efficiency). When a DMU is found to be able to decrease input while maintaining the same level of production, this indicates that the DMU's technology has yet to reach optimal state and its efficiency will be less than 1.

As Table 17 shows, the average TE for all seven DMUs is greater than 1, which means the DMUs in our analysis were able to enhance their military capabilities through the effective management and utilization of national defense resources without squandering the national treasury or making inappropriate investments.

TABLE 17 TE changes for national defense expenditure (1961-2008	TABLE 17	TE changes	for national	defense ex	penditure	(1961-2008)
---	----------	-------------------	--------------	------------	-----------	-------------

I ADLE I	/ TE Chang	es for nation			·	/		
Catch-up	TWN	KOR	TWN-E	KOR-E	JAPAN	INDIA	ISRAEL	Average
1961=>196	0.9707356	0.9645152	0.6534161	0.9609586	6.5877016	1.0660397	0.8777515	1.7258741
2	7	5	9	4	9*	4^*	6	0^*
1962=>196	1.0748505	0.8587932	1.0990342	1.5830233	1.2622058	1.2977902	0.9112446	1.1552774
3	1*	9	0^*	6*	7^*	6*	0	4^{*}
1963=>196	0.9368979	1.4103593	0.9123984	0.7301156	1.0004079	0.9680481	0.8568550	0.9735832
4	8	3*	0	4	8^*	0	6	1
1964=>196	0.7400179	1.0605341	0.7969794	1.0048798	1.0260953	1.0568279	0.8027429	0.9268682
5	9	9 *	5	1^{*}	7^*	8^*	9	5
1965=>196	1.1620472	1.2733636	1.2056263	0.7853215	1.2592961	4.1113183	0.6129090	1.4871260
6	6*	9*	9 *	9	5*	3*	3	6*
1966=>196	0.9849806	0.8213037	0.8788149	1.2175764	0.9438887	0.9292827	1.0287917	0.9720912
7	0	0	7	0^{*}	6	0	3*	6
1967=>196	0.9650476	1.1265070	1.0726769	0.8876997	0.8021201	0.7954646	1.8225678	1.0674405
8	6	2^*	6*	5	9	7	3*	8^*
1968=>196	1.1576110	0.7617711	1.1666041	1.3127301	1.2268590	1.3318492	0.8210463	1.1112101
9	9 *	9	8^*	4^{*}	1^*	8^*	1	7*
1969=>197	0.8750318	1.4359201	0.8487808	0.6964175	1.3739496	2.8954853	0.5593640	1.2407070
0	1	5*	3	5	7^*	2^*	0	5*
1970=>197	1.1963183	0.8984588	1.1155077	1.1130170	1.0564349	0.9387456	0.8735020	1.0274263
1	2^*	3	3*	5*	9^*	0	5	7*
1971=>197	0.7625503	0.8100703	0.8861898	1.2344606	0.2517143	0.3555380	4.4948592	1.2564832
2	1	5	0	8^*	1	6	0^*	5*
1972=>197	0.9385344	1.7395267	0.8705401	0.5748690	0.7827223	0.8057773	1.0034119	0.9593402
3	2	2^*	0	1	0	5	0^*	6
1973=>197	1.3440977	0.8055217	1.4854818	1.2414313	2.8410115	2.8363666	0.5369889	1.5844142

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 5 5* 5 4* 1 0* 2 9 1983=>198 1.0014987 0.6363598 0.7980787 0.6954743 0.6151053 0.5348909 1.1144303 0.7708340
4 2 9 9 6 7 0 6 6
1984=>198 0.6228137 0.6750899 0.7826630 0.5024070 0.6662359 0.6788195 1.4577424 0.7693959
5 3 2 0 5 9 9 1* 5 1985=>198 1.1969190 1.4807397 1.1392071 1.5489662 1.0061062 1.4099686 0.7683193 1.2214609
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1987=>19 1.2561325 1.0253907 1.3243555 1.1300874 0.9518655 1.0509460 0.9321947 1.0958532
88 3* 3* 7* 8* 8 2* 7 4* 1988=>19 0.7912752 1.4118282 0.8714984 1.5308621 1.1048544 1.2308598 1.0339178 1.1392994
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$1990 = >19 \ 0.9007466 \ 1.0044991 \ 1.0494782 \ 1.3244828 \ 0.8194913 \ 0.9948002 \ 0.9955209 \ 1.0127170$
91 2 7 [*] 8 [*] 4 [*] 7 7 8 7 [*] 1991=>19 0.8420115 1.4059871 0.8147939 1.0129451 1.1485964 1.5927279 1.4958674 1.1875613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1993=>19 1.0859763 1.0410080 1.0068277 1.0427686 1.0413774 0.9606334 0.9880118 1.0238005
94 3* 9* 4* 6* 9* 5 1 1* 1994=>19 1.0822485 0.8626960 1.1112820 0.8839724 0.7293991 0.9518498 1.1591568 0.9686578
95 6* 1 2* 0 3 9 7* 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1996=>19 0.9171183 1.0136206 0.9341593 0.9925884 0.9801983 0.8000000 0.9876896 0.9464821
97 4 9 [*] 6 2 1 0 3 1 1997=>19 0.9673340 1.2568263 0.9680055 1.2441747 1.3079870 1.2214407 0.7956548 1.1087747
98 5 8* 0 4* 8* 1* 5 6*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1999=>20 0.7353476 1.0947694 0.9999855 1.3169176 0.9330079 0.6901363 0.9693215 0.9627837
00 0 4 [*] 8 5 [*] 5 2 0 2 2000=>20 1.7792502 1.1762621 0.9178783 1.0979892 1.3726820 1.0117445 0.7440124 1.1571169
01 1* 9* 4 1* 7* 1* 3 9*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18

2002=>20	0.9284337	0.7366709	0.9581790	0.7462320	0.8513388	1.0440751	1.4565274	0.9602081
03	3	0	2	9	8	3*	0^*	6
2003=>20	0.6365036	0.9351447	0.6390635	0.8646061	0.9610117	0.8752034	1.0644685	0.8537145
04	8	8	4	0	4	3	3*	4
2004=>20	1.2349080	0.7375028	1.2141373	0.8136851	1.0126023	0.8840119	1.2213072	1.0168793
05	7*	8	8^*	3	8^*	6	7*	0^*
2005=>20	0.9422299	0.7572515	0.9009281	1.0315385	0.9287877	0.8588526	1.3336485	0.9647481
06	9	5	0	1^{*}	7	9	3*	6
2006=>20	1.1286826	1.2677624	1.4200964	1.2181596	1.3853030	0.9271829	0.8593044	1.1723559
07	5*	5*	4*	4*	9*	8	8	6*
2007=>20	0.9295527	0.9612453	0.8936517	1.0015619	0.9742650	1.1763229	1.0403171	0.9967024
08	1	0	1	7*	8	6*	8^*	2
Average	1.0151838	1.0208536	1.0108877	1.0304125	1.1943452	1.1646954	1.1265721	1.0804214
Average	0^*	2^*	3*	2^*	0^*	6*	2*	9*

5.7.3 Change in pure technical efficiency (PTE)

Overall technical inefficiency may be a result of inefficiency in PTE or SE. PTE is an indicator of DMUs' ability to effectively utilize relevant input items to achieve output maximization or input minimization; it reflects input efficiency. As Table 17 makes clear, Taiwan (1.005), Taiwan's equilibrium solution (1.005), Japan (1.007), India (1.037), and Israel (1.000) have all reached optimal PTE. In order to improve their efficiency, it is clear that South Korea's DMU should gradually revise its methods of national defense resource management and utilization.

PTE	TWN	KOR	TWN-E	KOR-E	JAPAN	INDIA	ISRAEL	Average
1961=>1962	1.408^{*}	1.000^{*}	0.948	0.957	1.410^{*}	1.094^{*}	1.000^{*}	1.102^{*}
1962=>1963	1.000^{*}	0.944	1.022^{*}	1.615^{*}	1.000^{*}	1.241^{*}	1.000^{*}	1.099^{*}
1963=>1964	1.000^{*}	1.059^{*}	0.974	0.714	1.000^{*}	0.802	1.000^{*}	0.928
1964=>1965	0.984	1.000^{*}	1.059^{*}	1.050^{*}	1.000^{*}	0.938	1.000^{*}	1.004^{*}
1965=>1966	0.964	1.000^{*}	1.000^{*}	0.750	1.000^{*}	2.554^{*}	1.000^{*}	1.092^{*}
1966=>1967	1.054^{*}	1.000^{*}	0.941	1.226^{*}	1.000^{*}	0.850	1.000^{*}	1.005^{*}
1967=>1968	0.956	1.000^{*}	1.063^{*}	0.878	1.000^{*}	1.185^{*}	1.000^{*}	1.008^*
1968=>1969	0.993	1.000^{*}	1.000^{*}	1.340^{*}	1.000^{*}	1.096^{*}	1.000^{*}	1.055^{*}
1969=>1970	1.031^{*}	1.000^{*}	1.000^{*}	0.690	1.000^{*}	2.347^{*}	1.000^{*}	1.076^{*}
1970=>1971	1.022^{*}	1.000^{*}	0.954	1.111^{*}	1.000^{*}	1.011^{*}	1.000^{*}	1.013^{*}
1971=>1972	0.903	1.000^{*}	1.048^{*}	1.265^{*}	0.313	0.625	1.000^{*}	0.813
1972=>1973	1.078^{*}	1.000^{*}	1.000^{*}	0.571	0.789	0.824	1.000^{*}	0.877
1973=>1974	0.905	1.000^{*}	1.000^{*}	1.222^{*}	2.533^{*}	1.949^{*}	1.000^{*}	1.274^{*}
1974=>1975	0.941	1.000^{*}	1.000^{*}	0.700	0.840	1.024^{*}	1.000^{*}	0.922
1975=>1976	1.208^*	1.000^{*}	0.992	1.372^{*}	1.906^{*}	1.584^{*}	1.000^{*}	1.257^{*}
1976=>1977	0.881	1.000^{*}	1.008^{*}	1.294^{*}	1.000^{*}	0.990	1.000^{*}	1.019^{*}
1977=>1978	0.813	1.000^{*}	1.000^{*}	0.955	1.000^{*}	1.074^{*}	1.000^{*}	0.974
1978=>1979	1.351^{*}	0.503	1.000^{*}	0.609	1.000^{*}	0.527	1.000^{*}	0.804
1979=>1980	1.033^{*}	1.988^{*}	0.973	1.735^{*}	1.000^{*}	1.936*	1.000^{*}	1.312*
1980=>1981	0.779	1.000^{*}	1.028^{*}	1.251^{*}	1.000^{*}	0.994	1.000^{*}	1.000^{*}
1981=>1982	1.092^{*}	1.000^{*}	1.000^{*}	0.937	1.000^{*}	0.987	1.000^{*}	1.001^{*}
1982=>1983	1.127^{*}	1.000^{*}	1.000^{*}	1.033^{*}	1.000^{*}	1.009^{*}	1.000^{*}	1.023^{*}
1983=>1984	1.043^{*}	1.000^{*}	0.831	1.093^{*}	1.000^{*}	0.827	1.000^{*}	0.966
1984=>1985	0.958	0.784	1.204^{*}	0.583	1.000^{*}	0.856	1.000^{*}	0.892
1985=>1986	1.044^{*}	1.276^{*}	0.994	1.337^{*}	1.000^{*}	1.243*	1.000^{*}	1.119*
1986=>1987	1.000^*	0.979	0.908	0.947	1.000^{*}	0.775	1.000^{*}	0.941
1987=>1988	1.000^*	0.924	1.054^{*}	1.020^{*}	1.000^{*}	1.100^{*}	1.000^{*}	1.013^{*}
1988=>1989	0.954	1.105^{*}	1.051^{*}	1.197^{*}	1.000^{*}	1.209^{*}	1.000^{*}	1.070^{*}
1989=>1990	1.048^*	0.952	0.855	0.615	1.000^{*}	0.927	1.000^{*}	0.902
1990=>1991	1.000^*	1.005^{*}	1.165^{*}	1.324^{*}	1.000^{*}	0.979	1.000^{*}	1.061^{*}
1991=>1992	1.000^{*}	0.983	0.968	0.708	1.000^{*}	1.455*	1.000^{*}	0.997

 TABLE 18
 PTE changes for defense expenditure (1961-2008)

1992=>1993	1.000^{*}	0.599	0.991	0.965	1.000^{*}	1.000^{*}	1.000^{*}	0.923
1993=>1994	1.000^{*}	1.003^{*}	0.927	1.004^{*}	1.000^{*}	0.986	1.000^{*}	0.988
1994=>1995	1.000^{*}	0.862	1.027^{*}	0.884	1.000^{*}	0.862	1.000^{*}	0.945
1995=>1996	1.000^{*}	0.890	1.052^{*}	1.056^{*}	1.000^{*}	0.981	1.000^{*}	0.996
1996=>1997	1.000^{*}	0.995	1.019^{*}	0.974	1.000^{*}	0.800	1.000^{*}	0.967
1997=>1998	1.000^{*}	1.256^{*}	1.001^{*}	1.244^{*}	1.000^{*}	1.061^{*}	1.000^{*}	1.075^{*}
1998=>1999	1.000^{*}	1.024^{*}	1.004^{*}	0.742	1.000^{*}	0.869	1.000^{*}	0.943
1999=>2000	0.751	1.011^{*}	1.021^{*}	1.216^{*}	1.000^{*}	0.716	1.000^{*}	0.945
2000=>2001	1.331^{*}	1.272^{*}	0.687	1.187^*	1.000^{*}	1.319^{*}	1.000^{*}	1.089^{*}
2001=>2002	1.000^{*}	1.009^{*}	1.350^{*}	0.915	1.000^{*}	1.038^{*}	1.000^{*}	1.037^{*}
2002=>2003	1.000^{*}	0.704	1.032^{*}	0.713	1.000^{*}	0.758	1.000^{*}	0.875
2003=>2004	1.000^{*}	0.941	1.004^{*}	0.871	1.000^{*}	0.881	1.000^{*}	0.955
2004=>2005	1.000^{*}	0.814	0.983	0.897	1.000^{*}	0.889	1.000^{*}	0.938
2005=>2006	1.000^{*}	0.751	0.956	1.023^{*}	1.000^{*}	0.853	1.000^{*}	0.935
2006=>2007	0.880	1.222^{*}	1.107^{*}	1.174^{*}	1.000^{*}	1.087^{*}	1.000^{*}	1.061^{*}
2007=>2008	1.040^{*}	0.961	1.000^{*}	1.001^{*}	1.000^{*}	1.144^{*}	1.000^{*}	1.020^{*}
Average	1.005^{*}	0.977	1.005^{*}	0.986	1.007^{*}	1.037^{*}	1.000^{*}	

5.7.4 Change in scale efficiency (SE)

SE reveals the ratio between output and input. In order to achieve scale efficiency, a DMU has to achieve proportionate growth. If growth is not proportional between input and output, the DMU is regarded as inefficient in terms of its scale of operation. A high SE value indicates scale fitness and high productivity. When the value of SE is smaller than 1, this indicates that an operation is increasing returns to scale, and the DMU should enlarge its scale of production. If SE = 1, this indicates that an operation has reached constant returns to scale (i.e., ideal scale of production) and the DMU could either expand or downsize the scale of production. However, when SE exceeds 1, the operation is then clearly decreasing returns to scale and the DMU should reduce the scale of production.

The results of our analysis are provided in Table 19, from which we can see that the subject DMUs that have reached the optimal average SE are Japan (1.025), India (1.005), and Israel (1.000). The average SE for Taiwan and its equilibrium solution was 0.973. The average SE for South Korea and its equilibrium solution, was 0.995, indicating that the SEs for both countries still have room for improvement (2.7% and 0.05% respectively).

SE	TWN	KOR	TWN-E	KOR-E	JAPAN	INDIA	ISRAEL	Average
1961=>1962	0.687	1.000^{*}	0.687	1.000^{*}	4.670^{*}	0.882	1.000^{*}	1.100^{*}
1962=>1963	1.076^{*}	0.995	1.076^{*}	0.995	1.242^{*}	1.129^{*}	1.000^{*}	1.070^{*}
1963=>1964	0.942	1.005^{*}	0.942	1.005^{*}	0.994	1.152^{*}	1.000^{*}	1.004^{*}
1964=>1965	0.767	1.000^*	0.767	1.000^{*}	1.031^{*}	1.125^{*}	1.000^{*}	0.947
1965=>1966	1.174^{*}	1.000^{*}	1.174^{*}	1.000^{*}	1.347^{*}	1.713^{*}	0.857	1.154^{*}
1966=>1967	0.936	1.000^{*}	0.936	1.000^{*}	0.863	1.038^{*}	0.951	0.959
1967=>1968	0.991	1.000^*	0.991	1.000^{*}	0.823	0.676	1.227^{*}	0.945
1968=>1969	1.194^{*}	1.000^*	1.194^{*}	1.000^{*}	1.227^{*}	1.170^{*}	1.000^{*}	1.108^{*}
1969=>1970	0.836	1.000^*	0.836	1.000^{*}	1.307^{*}	1.202^{*}	0.655	0.954
1970=>1971	1.170^{*}	1.000^{*}	1.170^{*}	1.000^{*}	1.081^{*}	0.993	1.152^{*}	1.078^{*}
1971=>1972	0.861	1.000^{*}	0.861	1.000^{*}	0.856	0.598	1.325^{*}	0.906
1972=>1973	0.869	1.000^*	0.869	1.000^{*}	0.966	0.944	1.000^{*}	0.948
1973=>1974	1.470^{*}	1.000^{*}	1.470^{*}	1.000^{*}	1.149^{*}	1.506^{*}	1.000^{*}	1.207^{*}
1974=>1975	1.068^{*}	1.000^{*}	1.038^{*}	1.000^{*}	0.951	0.835	1.000^{*}	0.986
1975=>1976	1.156^{*}	1.000^*	1.156^{*}	1.000^{*}	1.106^{*}	1.386^{*}	0.813	1.076^{*}
1976=>1977	1.063^{*}	1.000^*	1.063^{*}	1.000^{*}	1.000^{*}	0.924	1.230^{*}	1.036^{*}
1977=>1978	0.803	0.799	0.803	0.799	0.845	1.062^{*}	1.000^{*}	0.867
1978=>1979	0.359	0.957	0.359	0.957	0.403	0.839	1.000^{*}	0.631
1979=>1980	2.328^{*}	1.253^{*}	2.328^{*}	1.253^{*}	2.938^{*}	1.230^{*}	1.000^{*}	1.631*
1980=>1981	1.332^{*}	1.044^{*}	1.332^{*}	1.044^{*}	1.000^{*}	1.035^{*}	1.000^{*}	1.104^{*}
1981=>1982	0.632	0.887	0.632	0.887	0.984	0.910	1.000^{*}	0.834

 TABLE 19 SE changes for defense expenditure(1961-2008)

1982=>1983	0.836	0.976	0.836	0.976	0.897	1.000^{*}	1.000^{*}	0.929
1983=>1984	0.960	0.661	0.960	0.661	0.644	0.668	1.000^{*}	0.778
1984=>1985	0.650	0.861	0.650	0.861	0.646	0.813	1.000^{*}	0.773
1985=>1986	1.148^{*}	1.000^{*}	1.148^{*}	1.111^{*}	1.008^{*}	1.137^{*}	1.000^{*}	1.093*
1986=>1987	0.961	1.124^{*}	0.961	1.124^{*}	0.773	0.913	1.000^{*}	0.973
1987=>1988	1.256^{*}	1.125^{*}	1.256^{*}	1.125^{*}	0.933	0.923	1.000^{*}	1.081^{*}
1988=>1989	0.829	1.280^{*}	0.829	1.280^{*}	1.101^{*}	1.002^{*}	1.000^{*}	1.031*
1989=>1990	0.951	0.738	0.951	0.738	1.088^*	1.082^{*}	1.000^{*}	0.925
1990=>1991	0.901	1.000^{*}	0.901	1.000^{*}	0.833	1.000^{*}	1.000^{*}	0.946
1991=>1992	0.840	1.402^{*}	0.840	1.402^{*}	1.140^{*}	1.085^{*}	1.000^{*}	1.080^{*}
1992=>1993	1.172^{*}	1.013^{*}	1.172^{*}	1.013^{*}	0.874	1.079^{*}	1.000^{*}	1.042^{*}
1993=>1994	1.087^*	1.029^{*}	1.087^{*}	1.029^{*}	1.036^{*}	0.966	1.000^{*}	1.033*
1994=>1995	1.063^{*}	1.000^{*}	1.063^{*}	1.000^{*}	0.728	1.077^{*}	1.000^{*}	0.983
1995=>1996	0.991	0.909	0.991	0.909	1.235^{*}	1.000^{*}	1.000^{*}	1.000^{*}
1996=>1997	0.906	1.000^{*}	0.906	1.000^{*}	0.991	1.000^{*}	1.000^{*}	0.971
1997=>1998	0.953	1.000^{*}	0.953	1.000^{*}	1.305^{*}	1.214^{*}	1.000^{*}	1.053^{*}
1998=>1999	0.926	0.920	0.926	0.920	0.775	0.866	1.000^{*}	0.902
1999=>2000	0.960	1.100^{*}	0.960	1.100^{*}	0.917	1.000^{*}	1.000^{*}	1.003^{*}
2000=>2001	1.358^{*}	0.926	1.358^{*}	0.926	1.347^{*}	0.752	1.000^{*}	1.070^{*}
2001=>2002	1.079^{*}	1.000^{*}	1.079^{*}	1.000^{*}	0.988	1.000^{*}	1.000^{*}	1.020^{*}
2002=>2003	0.942	1.080^{*}	0.942	1.080^{*}	0.899	1.412^{*}	1.000^{*}	1.040^{*}
2003=>2004	0.622	0.962	0.622	0.962	0.931	0.962	1.000^{*}	0.850
2004=>2005	2.231^{*}	0.909	1.231^{*}	0.909	1.018^{*}	1.000^{*}	1.000^{*}	1.035^{*}
2005=>2006	0.936	1.000^{*}	0.936	1.000^{*}	0.922	1.000^{*}	1.000^{*}	0.970
2006=>2007	1.287^{*}	1.040^{*}	1.287^{*}	1.040^{*}	1.388^{*}	0.856	1.000^{*}	1.114^{*}
2007=>2008	0.894	1.000^{*}	0.894	1.000^{*}	0.962	1.000^{*}	1.000^{*}	0.963
Average	0.973	0.995	0.973	0.995	1.025^{*}	1.005^{*}	1.000^{*}	0.995

5.7.5 Change in frontier-shift effects

Technical changes refer to those changes in production frontiers that take place over time. If the value of technical change is greater than 1, this indicates that the entire sector has shown improvement; if the value = 1, the entire sector remains unchanged. If the value is smaller than 1, the entire sector has shown decline. The findings that emerge from our analysis (see Table 20) show that none of the subject DMUs achieved the optimal technical changes of the average production frontier. The means for each subject DMU are as follows: Taiwan (0.95727), South Korea (0.962236), Taiwan's equilibrium solution (0.95727), South Korea's equilibrium solution (0.96062), Japan (0.97883), India (0.9766), and Israel (0.9283). These results imply that all of our DMUs could improve in this area.

Frontier		KOR		· · · ·	,	INDIA	ISRAEL	Average
1961=>19	0.8534939	0.8643135	0.8534939	0.8488400	0.8131578	0.8131578	0.8974495	0.8491295
62	02	11	02	27	95	95	97	32
1962=>19	0.8118234	0.8304966	0.8118234	0.8005732	0.7933425	0.7933425	0.8621201	0.8147888
63	52	41	52	78	8	8	74	79
		0.9514035					0.9002540	0.9681330
64	88^*	19	88^*	88^*	33	33	22	53
		1.0128985						0.9823105
65	45^{*}	51*	45^{*}	24^{*}	56	56	87	52
1965=>19	0.7676011	0.7221734	0.7676011	0.8149251	0.7056543	0.7056543	0.8337355	0.7596207
66	77	46	77	99	39	39	44	46
		1.0492971					0.9384239	0.9632463
67	17	68^*	17	33	21	21	21	99
1967=>19	0.8658734	0.7714443					0.8081067	0.9158404
68	15	73	15	84	28^*	28^*	08	22
1968=>19	0.7852348	0.9438278	0.7852348	0.8237682	0.7575392	0.7575392	0.8360288	0.8127390
69	99	12	99	37	04	04	92	21
1969=>19	0.9309793	0.7059640	0.9309793	0.8459559	0.5894774	0.5894774	0.7151767	0.7582871

70	66	75	66	45	27	27	58	95
1970=>19		0.8409731	0.7909420	0.7971337	0.8251034	0.8473345	0.8292980	0.8173895
71	29	54	29	99	12	87	28	77
1971=>19	0.9524744	1.0635114	0.9524744	0.9572018	2.6338827	2.5507818	1.1758646	1.4694558
72	13	39*	13	62	01^{*}	09*	27^{*}	95*
1972=>19	0.9120658	0.6976853	0.9120658	0.9201849	0.9690779	0.9688406	0.9664148	0.9066193
73	9	25	9	8	36	32	15	52
1973=>19	0.6329019	0.7110882	0.6329019	0.6382078	0.3603400	0.3629813	0.4937828	0.5474577
74	67	01	67	17	84	75	7	55
1974=>19		0.6581279	0.7868504	0.7868504	1.0653652	1.0653652	0.9167544	0.8665949
75	77	34	77	77	76 [*]	76*	81	14
1975=>19	0.5984906	0.8502379	0.5984906	0.6432740	0.4086871	0.4316448	0.7335307	0.6091937
76	67	94	67	74	31	93	0.0070400	32
1976=>19		0.8821836	0.8275693	0.7503204	0.7575814	0.8267251	0.8072490	0.8113140
77 1077 \ 10	63	66	63	64 1.1099395	72	12	12	65
1977=>19 78	1.2900302 11*	1.1509859 38 [*]	1.2900302 11*	1.1099393 44 [*]	0.9696919 54	0.8427658 77	1.0125932 34 [*]	1.0951481 38 [*]
	2.0631436	38 2.1479898	2.0631436	44 2.1479898	2.1479898	2.1479898	54 1.2898752	38 2.0011602
1978–219 79	2.0051450 31 [*]	2.1479090 7*	2.0051450 31 [*]	2.1479090 7*	2.1479090 7*	2.1479090 7*	1.2090752 12*	2.0011002 79*
1979=>19	-	0.3834219	0.3190635	0.3834219	0.3842168	, 0.3869951	0.5857834	0.3945666
80	45	14	45	14	6	68	63	3
1980=>19		0.7909087	0.7184720	0.8015469	0.8269426	0.8461555	0.7783003	0.7829711
81	58	27	58	67	41	51	88	99
-	1.2253050	1.1841694	1.2253050	1.1684529	1.1314833	1.0978253	1.1115399	1.1634401
82	89*	07*	89*	51*	44*	71*	62*	73 [*]
1982=>19	0.9271544	0.9001829	0.9271544	0.9001829	0.9001829	0.9001829	0.9584727	0.9162162
83	39	89	39	89	89	89	77	3
1983=>19	1.1034411	1.5982751	1.1034411	1.5982751	1.6419799	1.6419799	1.2750641	1.4232080
84	34*	99 [*]	34*	99 [*]	05^{*}	05^*	55*	9*
1984=>19	1.3353708	1.3365134	1.3353708	1.3365134	1.3522136	1.3522136	1.1129693	1.3087378
85	71*	56*	71*	56*	25^{*}	25*	62*	95*
1985=>19		0.6279979	0.7062942	0.6279979	0.6246086	0.6246086	0.7577500	0.6679359
86	92	75	92	75	24	24	17	71
1986=>19	0.770707070	1.1121594	0.9959390	1.1121594	1.1121594	1.1121594	0.9906841	1.0615999
87 1007 - 10	06	43*	06	43*	43*	43*	49	9* 0.0004001
		0.8949211						
88	91	91 0.8963893	91	91	91	91 0.8963893	65 0 8815636	59 0 8042712
1900– <i>></i> 19 89	25	25	25	25	25	25	25	0.8942713 68
		1.0079113				1.0079113		
90	92 [*]	92 [*]	92 [*]	92 [*]	92 [*]	92 [*]	61 [*]	1.0277103 17*
	-	1.0259740	-	1.0259740	1.0259740	-	1.0282794	
91	26 [*]	26 [*]	26 [*]	26 [*]	26 [*]	26 [*]	54 [*]	73*
-	-	0.8334175				0.8334175		
92	58*	6	58*	6	6	6	63	31
1992=>19	0.9883040	0.9826887	0.9883040	0.9826887	0.9826887	0.9826887	0.7674678	0.9535472
93	94	29	94	29	29	29	78	83
1993=>19	0.9284090	0.9026578	0.9284090	0.9026578	0.9026578	0.9026578	0.9209799	0.9126327
94	91	07	91	07	07	07	93	72
		1.0434782				1.0434782		
95	61*	61*	61*	61*	61*	61*	32	28^{*}
		1.0184992				1.0184992		
96	15*	15*	15*	15*	15*	15*	97	7*
		1.0606060						
97 1007 · 10	61 [*]	61* 0.0420571	61 [*]	61 [*]	61*	61 [*]	87*	64 [*]
		0.9428571					1.0570208	
98	43	43	43	43	43	43	14^{*}	39
22								

1998=>19 99	1.0761577 5*	1.1180653 98*	1.0761577 5*	1.1180653 98*	1.1180653 98*	1.1180653 98*	1.0940156 03*	1.1026560 99*
1999=>20	•	0.9405606	0.9405606	0.9405606	0.9405606	0.9405606	0.9609320	0.9434708
00	72	72	72	72	72	72	44	68
2000=>20	0.8398992	0.8398992	0.8398992	0.8398992	0.8398992	0.8398992	0.9122536	0.8502356
01	62	62	62	62	62	62	24	0.8502550
2001=>20	0.9574468	0.9574468	0.9574468	0.9574468	0.9574468	0.9574468	0.9615129	0.9580276
02	09	09	09	09	09	09	35	84
2002=>20	1.2135571	1.2135571	1.2135571	1.2135571	1.2135571	1.2135571	1.0415904	1.1889904
03	09*	09*	09*	09*	09*	09*	18^{*}	39*
2003=>20	0.9541228	0.9541228	0.9541228	0.9541228	0.9541228	0.9541228	0.9226642	0.9496287
04	02	02	02	02	02	02	67	26
2004=>20	0.9975183	0.9975183	0.9975183	0.9975183	0.9975183	0.9975183	0.9011011	0.9837444
05	83	83	83	83	83	83	64	95
2005=>20	1.0900241	1.0900241	1.0900241	1.0900241	1.0900241	1.0900241	0.9471639	1.0696155
06	9 *	9*	9 *	9 [*]	9 *	9 *	54	85*
2006=>20	0.7318929	0.7318929	0.7318929	0.7318929	0.7318929	0.7318929	0.8232357	0.7449419
07	35	35	35	35	35	35	27	05
2007=>20	0.984375	0.984375	0.984375	0.984375	0.984375	0.984375	0.9651119	0.9816231
08	0.201373	0.201313	0.201313	0.201313		0.201313	45	35
Average	0.9572701	0.9622360	0.9572701	0.9606299	0.9788363	0.9766031	0.9283080	0.9601648
11101050	17	64	17	99	09	78	43	32

5.7.6 Change in total factor productivity (TFP)

The Malmquist index is a tool used to assess cross-sectional TFP changes. $M^t > 1$ indicates improvement in productivity and $M^t < 1$ indicates decline in productivity. In their study, Fare et al. (1994) broke the Malmquist index (TFP) down further into technical efficiency (TE) and technical change (TC). Using this formula, the total factor productivity (TFP) can be represented as the ratio of total output against total input.

As Table 21 makes clear, only Israel and Japan showed improvement over the time period in terms of TFP; TFPs for the remaining five DMUs in the study are all smaller than 1 (indicating decline). The geometric mean for TFP change for all seven DMUs was 0.9716364, indicating that their mean TFP over the past 47 years has regressed slightly.

Malmquis t	TWN	KOR	TWN-E	KOR-E	JAPAN	INDIA	ISRAEL	Average
1961=>1	0.828516	0.833643	0.557686	0.815700	5.356841	0.866858	0.787737	1.435283
962	97	56	73	16	64*	63	78	64
1962=>1	0.872588	0.713224	0.892221	1.267326	1.001361	1.029592	0.785602	0.937416
963	85	94	74	20^{*}	66*	28^*	35	86
1963=>1	1.017660	1.341820	0.991049	0.793053	0.833673	0.806706	0.771387	0.936478
964	82^{*}	83*	32	35	32	75	22	80
1964=>1	0.762405	1.074213	0.821089	1.048195	0.908719	0.935936	0.793469	0.906289
965	12	54^{*}	78	79^{*}	15	22	45	86
1965=>1	0.891988	0.919589	0.925440	0.639978	0.888627	2.901169	0.511004	1.096828
966	85	45	24	35	79	62^{*}	04	33
1966=>1	0.949138	0.861791	0.846835	1.157834	0.885767	0.872061	0.965442	0.934124
967	06	65	70	83*	79	11	76	56
1967=>1	0.835609	0.869037	0.928802	0.726838	0.914736	0.907146	1.472829	0.950714
968	11	50	46	07	61	66	29^{*}	24
1968=>1	0.908996	0.718980	0.916058	1.081385	0.929393	1.008928	0.686418	0.892880
969	62	84	32	39 [*]	80	05^*	44	21
1969=>1	0.814636	1.013708	0.790197	0.589138	0.809912	1.706823	0.400044	0.874922
970	56	04^*	44	57	31	23*	13	90
1970=>1	0.946218	0.755579	0.882301	0.887223	0.871668	0.795431	0.724393	0.837545
								22

 TABLE 21
 TFP changes for defense expenditure from(1961- 2008)

971	44	76	94	51	12	61	53	27
1971=>1	0.726309	0.861519	0.844073	1.181628	0.662985	0.906900	5.285345	1.495537
972	66	09	11	06^*	98	02	94 [*]	41
1972=>1	0.856005	1.213642	0.793989	0.528985	0.758518	0.780669	0.969712	0.843074
973	23	26^{*}	93	83	92	84	13	88
1973=>1	0.850682	0.572797	0.940164	0.792291	1.023730	1.029548	0.265155	0.782052
974	10	04	39	19	32*	25^{*}	96	75
1974=>1	0.791048	0.940749	0.841096	0.550463	0.865768	0.918421	1.238193	0.877963
975	72	73	71	39	16	05	38*	02
1975=>1	0.831752	0.486689	0.683462	0.879484	0.953522	0.939841	0.285232	0.722854
976 1076-> 1	02	07	50	46 0.973863	17	82	24	90 0.862455
1976=>1 977	0.776090 45	0.638167 33	0.887639 31	0.973803 63	0.909596 75	0.804993 43	1.046834 72 [*]	0.862455 09
1977=>1	0.842564	0.834555	1.035895	0.823788	0.622700	0.966386	1.643481	0.967053
978	70	58	48 [*]	33	11	55	20 [*]	14
1978=>1	1.000607	1.061664	0.740747	1.284248	0.856076	0.959677	3.435690	1.334101
979	71*	57*	91	07*	79	42	20^*	81
1979=>1	0.767854	0.974760	0.722907	0.851006	1.133822	0.919769	0.207708	0.796832
980	68	32	72	38	32*	25	01	67
1980=>1	0.745473	0.829142	0.983464	1.022321	0.868710	0.859375	0.689177	0.856809
981	31	05	09	67*	41	00	11	09
1981=>1	0.845778 54	0.971983	0.774502 44	0.924986 19	1.017273 88*	0.973384 03	1.382635 64*	0.984363 48
982 1982=>1	0.872958	66 0.959372	44 0.774554	0.990611	00 0.853430	0.933199	04 0.870769	48 0.893556
983	32	67	78	36	0.055450 73	63	28	68
1983=>1	1.105094	1.017078	0.880632	1.111559	1.009990	0.878280	1.420970	1.060515
984	88^*	24^{*}	96	42^{*}	66 [*]	11	20^{*}	21
1984=>1	0.831687	0.902266	1.045145	0.671473	0.900893	0.917909	1.622422	0.984542
985	31	76	38*	79	38	09	64^*	62
1985=>1	0.845377	0.929901	0.804615	0.972747	0.628422	0.880678	0.582193	0.806276
986	11	55	47	67	61	55	99	71
1986=>1 987	0.957466 51	1.165434 80*	0.869685 11	1.129118 60*	0.831691 82	0.783049 94	1.118058 64 [*]	0.979215 06
987 1987=>1	1.124139	0.917643	1.185193	1.011339	82 0.851844	94 0.940513	0.864048	0.984960
988	62*	90	86 [*]	23*	68	86	51	52
1988=>1	0.709290	1.265547	0.781201	1.372248	0.990379	1.103329	0.911464	1.019066
989	72	79^*	92	46^{*}	77	67*	36	10
1989=>1	1.004498	0.703058	0.819570	0.453849	1.091461	0.961531	0.884991	0.845565
990	62*	61	19	91	43*	09	69	93
1990=>1	0.924142	1.030590	1.076737	1.358885	0.840776	1.020639	1.023673	1.039349
991 1001 - 1	63 0.041545	06*	45*	00*	86	23*	77*	29
1991=>1 992	0.941545 75	1.171774 41*	0.911110 73	0.844206 27	0.957260 43	1.327407 41*	$1.187420 \\ 00^*$	1.048675 00
1992=>1	1.154752	0.599383	1.144267	0.966664	0.872071	1.066350	1.272685	1.010882
993	18 [*]	0.577505	35 [*]	48	64	71 [*]	1.272005 16 [*]	08
1993=>1	1.008230	0.939674	0.934748	0.941263	0.940007	0.867123	0.909939	0.934426
994	30*	08	03	27	52	29	11	51
1994=>1	1.129302	0.900204	1.159598	0.922405	0.761112	0.993234	1.123451	0.998472
995	85 [*]	53	63 [*]	98	13	67	97 [*]	97
1995=>1	0.964695 04	0.804334	1.014957 15*	0.954964 98	1.226990 60*	0.966666 67	1.058595 28*	0.998743
996 1996=>1	04 0.972701	11 1.075052	0.990775	98 1.052745	1.039604	07	28 1.054057	40 1.004774
1990->1 997	27	1.075052 25*	0.990773	1.0 <i>52</i> 745 29*	1.039004 27*	0.848484 85	62 [*]	38
1997=>1	0.912057	1.185007	0.912690	1.173079	1.233244	1.151644	0.841023	1.058392
998	82	73*	90	04^{*}	96*	10^{*}	73	61
1998=>1	0.996640	1.070483	1.000364	0.775498	0.875347	0.900474	1.058591	0.953914
999	71	12^{*}	99*	89	32	15	39*	37
24								

1999=>2	0.691639	1.029697	0.940547	1.238640	0.877550	0.649115	0.931452	0.908377
000	0.091039	08*	11	95 [*]	59	0.017115	0.951152	42
2000=>2	1.494390	0.987941	0.770925	0.922200	1.152914	0.849763	0.678728	0.979552
2000 <i>–</i> 22 001	94 [*]	75	34	33	1.1 <i>32</i> ,714 66 [*]	47	0.078728	0.979332
2001 => 2	1.033339	0.965596	1.395520	0.876253	0.946009	0.993589	0.953397	1.023386
002	34*	33	80*	01	39	74	88	64
2002=>2	1.126707	0.893992	1.162804	0.905595	1.033148	1.267044	1.517104	1.129485
003	35*	21	96 [*]	25	36*	80^*	98^{*}	41
2003=>2	0.607302	0.892242	0.609745	0.824940	0.916923	0.835051	0.982147	0.809764
004	67	96	10	39	21	55	07	71
2004=>2	1.231843	0.735672	1.211124	0.811665	1.010089	0.881818	1.100521	0.997533
005	50^{*}	68	36*	88	49 [*]	18	40^{*}	64
2005=>2	1.027053	0.825422	0.982033	1.124401	1.012401	0.936170	1.263183	1.024380
006	48^*	50	42	93 [*]	14^{*}	21	81^{*}	93
2006=>2	0.826074	0.927866	1.039358	0.891562	1.013893	0.678598	0.707410	0.869252
007	86	38	55*	44	54*	67	15	08
2007=>2	0.915028	0.946225	0.879688	0.985912	0.959042	1.157942	1.004022	0.978266
008	45	84	40	56	19	92*	53*	13
Average	0.920635	0.921887	0.916962	0.938373	1.019147	0.993175	1.091272	0.971636
	91	79	24	95	05*	16	78^*	41

6. CONCLUSIONS AND POLICY IMPLICATIONS

6.1 Conclusions

This paper outlines an original empirical analysis on national defense and economy by incorporating strategy (game-theoretical model) and performance assessment (DEA) with a subjective evaluation of a select group of DMUs' current progress in balancing national defense construction and economic construction. The findings from the analysis lead to the following conclusions.

Inspirations from the equilibrium solutions from Taiwan and South Korea's game

(1) Taiwan: During the 52 years between 1957 and 2008, Taiwan's true national defense expenditure growth rate was greater than that of the equilibrium solution for 23 years (see Table 12 and Figure 3). This suggests that Taiwan's actual national defense expenditure did not exceed the reasonable limit for social economic development.

(2) South Korea: The actual national defense expenditure of South Korea was higher than that of the equilibrium solution for ten years (see Table 12 and Figure. 4). This indicates that South Korea's DMU has been more effective than Taiwan's in terms of national defense resource utilization; it also explains why the nation experienced only three years of negative economic growth (1986, 1997, and 1998) during a period of 48 years.

2. Discussion of the overall productivity of national defense expenditure

(1) With regard to TFP: Only Israel (1.0912) and Japan (1.0191) showed improvement in their average TFP; the remaining five DMUs in our dataset showed decline. In terms of equilibrium solution, the average TFP for South Korea's equilibrium solution was higher than the true value; this is in direct contrast to the situation in Taiwan.

The average TE for all seven DMUs was found to be greater than 1, indicating that all the DMUs in our dataset have adequately utilized their national defense resources. This indicates that the primary cause for decline in TFP; this assumption is consistent with the facts. The average technical change efficiency for all seven DMUs in our dataset were below 1. From this, we can establish that a decline in the overall national defense productivity frontier has been the primary factor behind the decline in TFP.

(2) In terms of TE: India (1.042), Japan (1.032) and Israel (1.000) all showed improvement.

During the analysis, we also established that $TE = PTE \times SE$. In terms of PTE, DMUs that scored above 1 were India (1.037), Japan (1.007), Taiwan (1.005), Taiwan's equilibrium solution (1.000), and Israel (1.000). DMUs whose scale efficiency went through decline included South Korea's equilibrium solution (0.995), Taiwan (0.973), Taiwan's equilibrium solution (0.973), and South Korea (0.995).

This shows that, owing to non-proportional input and output, both Taiwan and Taiwan's equilibrium solution did not reach the optimal scale for return.

If we compare and analyze the relative efficiency of the equilibrium solution to Taiwan's game, Taiwan's actual expenditure, the equilibrium solution to South Korea's game, and South Korea's actual expenditure, it is clear that the TE values for all four of these DMUs were greater than 1 (with the exception of South Korea's equilibrium solution (1.0304), which was greater than South Korea (1.0208); in contrast, Taiwan (1.0151) was greater than Taiwan's equilibrium solution (1.0108). In terms of technical change, both Taiwan and its equilibrium solution were equivalent at (0.9572), whereas South Korea (0.9622) outperformed South Korea's equilibrium solution (0.9606). In terms of TFP, South Korea's equilibrium solution (0.9383) was greater than South Korea (0.9218) and Taiwan (0.9206) was greater than Taiwan's equilibrium solution (0.9169). On the basis of the relative efficiency between the equilibrium solution (derived from the game-theoretic model) and their actual expenditures, the differences between South Korea's and Taiwan's performance reflects the discrepancies between theory and reality; it would be a worthy endeavor to clarify the discrepancies further.

From analyses and comparisons of the national defense expenditure (input) and military capabilities (output) presented in the previous sections, it is clear that the DMUs in our dataset have achieved an outstanding performance in terms of technical efficiency. This indicates that the DMUs in our dataset have all made adequate use of the national defense resources and have outstanding military capabilities.

6.2 Policy Implications

This paper offers significant advantages over other studies that have been conducted in this area by establishing a game-theoretic model between the government and the Ministry of National Defense that moves beyond the limitations of traditional research frameworks. By focusing on the interactive relationship between national defense expenditure, national defense security, and economic growth the analysis can accurately predict a scheme of growth for Taiwan and South Korea that allows the configuration of national defense expenditure and economic construction to reach equilibrium under limited state financial resources. By adopting the DEA method, this analysis is not a purely theoretical discussion (a prevalent trend in previous studies). Instead, the authors attempt to identify the discrepancies between the theoretical values and true values in examining the effectiveness of the approaches adopted by the DMUs in the dataset. Findings from this research will serve as a useful reference for competent authorities in their decision-making processes for effective allotment of state financial resources in their attempt to achieve an effective configuration of equilibrium between national defense and economic construction.

References

- Aizenman, J. and Glick, R. (2003) Military Expenditure, Threats and Growth. NBER Working Paper. No. 9618.
- Barro, R. J. (1990) Government spending in a simple model of endogenous growth. *Journal of Political Economy* **98**(5), S103–S125.
- Benoit, E. (1978) Growth and Defense in Developing Countries. *Economic Development and Cultural Change* 26(2), 271–280.
- Brams, S.J. (1985) *Superpower Games: Applying game Theory to Superpower Conflict*. New Haven, CT: Yale University Press.
- Burgess, C.M. (1988) A Management Analysis and System Model of Development of Defense Acquisition Structure and Policy, Ph.D. Dissertation, Florida State University.
- Brumm, H. J. (1997) Military spending, government disarray, and economic growth: A cross-country empirical analysis. *Journal of Macroeconomics* **19**(4), 827–838.
- Caves, D. W., L. R. Christensen and Diewert, E. (1982) The Economic Theory of Index Numbers and the Measurement of Input, Output and Productivity. *Econometrica*, **50**(6), 1393-1414.
- Chang, W. Y., H. F. Tsai, and Lai, C. (1996) Effects of Anticipated Foreign Military Threat on Arms Accumulation. *Southern Economic Journal*, **63**, 507–514.
- Chang, T., Fang, W., Wen, L. F. and Liu, C. (2001) Defense spending, economic growth and temporal causality: Evidence from Taiwan and mainland China, 1952–1995. *Applied Economics*, **33**(10),1289–1299.
- Charnes, A., Cooper, W. and Rhodes, E. (1978) Measuring the Efficiency of Decision Making Units. *European Journal of Operational Research*, **2**, 429-444.

Cline, R.S. (1980) World Power Trends and U.S. Foreign Policy for the 1980s. Boulder: Westview Press.

- Deger, S. and Sen, S. (1995) Military Expenditure and Developing Countries. In K. Hartley and T. Sandler (eds), *Handbook of Defense Economics*, **1**, 275–307.
- DeRouen, K. (1995) Arab-Israeli Defense Spending and Economic Growth. *Conflict Management and Peace Science*, **14**, 25–47.
- Färe. R, S. Grosskopf, M. and Zhang, Z. (1994) Productivity Growth, Technical Progress, and Efficiency Chang in Industrialized Countries. *Agriculture Economics Review*, 1, 66-83.
- Galvin, H. (2003) The impact of Defense spending on the economic growth of developing countries: a cross-section study. *Defense and Peace Economics*, **14**(1), 51–59.
- Gerace, M. P. (2002) US military expenditures and economic growth: some evidence from spectral methods. *Defense and Peace Economics*, **13**(1), 1–11.
- Klein, T. (2004) Military expenditure and economic growth: Peru 1970-1996. *Defense and Peace Economics*, **15**(3), 275–288.
- Kollias, C., Naxakis, C. and Zaranga, L. (2004) Defense spending and growth in Cyprus: a causal analysis. *Defense and Peace Economics*, **15**, 299–307.
- Lai, C. N., Huang, B. N. and Yang, C. (2005) Defense spending and economic growth across the Taiwan Straits: a threshold regression model. *Defense and Peace Economics*, **16**, 45–57.
- Lambelet, J.C., U. Luterbacher and Allan, P. (1979) Dynamics of Arms Races: Mutual Simulation vs. Selfstimulation. *Journal of Peace Science*, **52**, 49-66.
- Landau, D. (1996) Is One of the 'Peace Dividents' Negative? Military Expenditure and Economic Growth in the Wealthy OECD Countries. *The Quarterly Review of Economics and Finance*, **36**, 183–195.
- Lipow, J. and Antinori, C. (1995) External Security Threats, Defense Expenditures, and the Economic Growth of Less Developed Countries. *Journal of Policy Modeling*, **17**, 579–595.
- Macnair, E., Murdoch, C. and Sandier, T. (1995) Growth and Defense: Pooled Estimates for the NATO Alliance, 1951–1988. *Southern Economic Journal*, **61**, 846–860.
- Murdoch, J., Pi, C. and Sandler, T. (1997) The Impact of Defense and Non-Defense Public Spending on Growth in Asia and Latin America. *Defense and Peace Economics*, **8**, 205–224.
- Mintz, A. and Huang, C. (1990) Defense Expenditures, Economic Growth and the Peace Dividend. *American Political Science Review*, **84**, 1283–1293.
- Mintz, A. and Stevenson, R. (1995) Defense Expenditures, Economic Growth and the Peace Dividend: A Longitudinal Analysis of 103 Countries. *Journal of Conflict Resolution*, **39**, 283–305.
- Shieh, J. Y., Lai, C. and Chang, W. (2002a) The Impact of Military Burden on Long-run Growth and Welfare. *Journal of Development Economics*, **68**, 443–454.
- Shieh, J. Y., Lai, C. and Chang, W. (2002b) Endogenous Growth and Defense Expenditures: A New Explanation of the Benoit Hypothesis. *Defense and Peace Economics*, **13**, 179–186.
- Ward, M. and Davis, D. (1992) Sizing Up the Peace Dividend: Economic Growth and Military Spending in the United States: 1958–1996. *American Political Science Review*, **86**, 748–755.
- Zou, H. F. (1995) A Dynamic Model of Capital and Arms Accumulation. *Journal of Economic Dynamics and Control*, **19**, 371–393.