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Abstract  
 

This paper is concerned with applying an optimal pairs trading strategy to stocks under Geometric Brownian 

Motions proposed by Tie et al.(2018) to actual market data. Traditional pairs trading strategy usually assume a 

difference of the stock prices follows a mean-reversion. In addition, a pair selection process is necessary to 

confirm that the difference between stocks constituting a pair follows a mean-reversion process, and a 

cointegration test is generally used for pair selection. Compared to the traditional pair trading strategy, the 

advantage of this strategy is that it allows the stocks used in the strategy to follow general Geometric 

Brownian motions. In this paper, the optimal pairs trading strategy was applied to the daily closing price data 

of 83 stocks composing the S&P100 for 20 years. In particular, the cointegration testwas applied for pairs 

selection. As the significance level of the cointegration test is closer to 0, the difference between the stocks 

making up pairs is more likely to follow the mean-reversion model. Conversely, as the significance level is 

closer to 1, the relationship of the stocks making up pairs is free. As the result, it was found that the 

cointegration test was not necessary for pair selection to improve the overall performance. We also considered 

conditions of other variables in order to obtain better performance of the strategy.If the variables are well 

selected, it was confirmed that by applying this optimal pairs trading strategy, a stable annual average return 

of 14% or more can be obtained. 
 

Keywords: pairs trading, cointegration,optimaltrading strategy, S&P100; 
 

Subject classification codes: 93E20, 91G80, 49L20 
 

1. Introduction 
 

Pairs trading is a trading strategy to track the price movements of two stocks and compare the relative 

price strengths. In general, pairs trading consists of a short position in a strong stock and a long position in the 

weak one. This strategy bets on the reversal of their price strength. Pairstrading is attractive to investors due to 

their ``market neutral'' nature, by which traders can make a profit from any market condition. Pairs trading 

was developed by the Wall Street quant Nunzio Tartaglia at Morgan Stanley; SeeGatev, Goetzmann and 

Rouwenhorst(2006) for details.  
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There has been a lot of in-depth discussion regarding the causes of divergence and subsequent 

convergence; see Vidyamurthy'sbook(2004).Mashele, Terblanche and Venter(2013) suggested formal trading 

rules of pairs trading strategies by back-testing on stocks listed on the Johannesburg Stock Exchange.  
 

Mathematical approaches of trading rules and portfolio selection have been developed for many years. 

Zhang(2001) presented an approach to find a target price and a stop-loss limit, obtained by solving a set of 

two-point boundary value problems, using the regime switching model. Guo and Zhang(2005) derived optimal 

selling rules under a regime switching Geometric Brownian Motion and proposed that there are optimal 

threshold levels in trading of stocks that can be obtained by solving a set of algebraic equations with a 

smooth-fit technique. Dai, Zhang and Zhu(2010) studied a trend following a trading rule based on a 

conditional probability of a bull market. They derived the optimal trading obtained by two threshold curves, 

which can be determined by solving the associated Hamilton–Jacobi–Bellman (HJB) equations. Song and 

Zhang (2013) developed an advanced mathematical method in pairs trading when the portfolio of the 

underlying pairs follows a mean-reversion model and proposed that the optimal pairs trading rule can be 

determined by threshold levels of both buying and selling obtained by solving algebraic equations. However, 

the assumption of the mean reversion model for stock pairs in this research shows a limitation on its 

applications in selecting stock pairs, which are required to be from the same industrial sector. To relax this 

constraint, Tie, Zhang and Zhang(2018) developed a general approach of pairs trading under Geometric 

Brownian Motions that can be used to trade any pairs of stocks without reference to price correlation 

condition. They presented a sophisticated general approach for pairs trading using two stocks (Walmart and 

Target) with numerical results. However, there is a lack of efficiency in the performance of their approach in 

the real market.In this paper, we investigated the pairs trading performance, presented in Tieet al.(2018), with 

the stocks that make up S&P 100 to understand how the results are realized in the real market.  
 

To improve the efficiency and performance of pair trading, many researchers have applied a 

cointegration method. Lin, McCrae and Gulati(2006) used the cointegration method to protect the pair trading 

strategy from serious losses. They applied the OLS method to create spreads and set various conditions that 

translate into trading behavior. In their models, they have achieved their trading strategy with a minimum 

level of return that is protected from the risk of loss. The result was an excess return of about 11% per year for 

the entire period. Mikkelsen(2018) compared the performances of distance and cointegration approaches with 

using each high-frequency and daily dataset to check whether it is profitable for Norwegian seafood 

companies and obtained a similar result for the two approaches. Fallahpour, Hakimian, Taheri and 

Ramezanifar (2016) applied a cointegration test to various pairs of stocks and a vector error-correction model 

to make a trading signal. 
 

The main contributions of this study are summarized in three ways. First, we modify the model of Tie 

et al.(2018) with several limitations to fit to the real market and measure the performance of the optimal 

selling rule using 20 years of historical data for the stocks that make up the S&P100, and verify the 

effectiveness of the model. Second, since there was no design for cut loss in their work, we try to apply the 

cointegration test to stock pairs selection to limit the likelihood of heavy losses. In addition, by adjusting the 

significance level of the cointegration test, we investigate how the pair selection through the cointegration test 

affects the performance of this strategy. Finally, we confirm the importance of some parameters by analyzing 

their sensitivity to performance in the real market. 
 

The progress of this study is as follows. In section 2, the problem formulation and notations will be 

introduced, and the optimal pairs trading strategy under Geometric Brownian Motion obtained from Tie et 

al.(2018) will be reviewed. Section 3 introduces the data used in this study and describes technical 

background knowledge for calculating performance that will be obtained using real market data such as 

cointegration tests, pairs trading strategies, and measure of performance. Section 4 summarizes the algorithm 

of the strategy, and measures the portfolio's return, equity curves, and Sharpe ratios. In addition, the 

sensitivities of the rate of return to changes in several variables are investigated. The results are briefly 

summarized in section 5.  
 

2. The optimal pairs trading strategy under Geometric Brownian Motion and its application 
 

In this section, we review the process of obtaining thresholds for buying and selling stocks through 

the rule of Tie et al.(2018) and briefly look at what parts to consider for application in the real market. To 

avoid confusion of notations, many mathematical notations are shared with the notations in their papers. 

Let  𝑋𝑡
𝑖 , 𝑡 ≥ 0  denote the price of stock 𝑆𝑖  for i∈{1, 2}. Then 
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d 
𝑋𝑡

1

𝑋𝑡
2 =  

𝑋𝑡
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0 𝑋𝑡
2   

𝜇1

𝜇2
 𝑑𝑡 +  

𝜎11 𝜎12

𝜎21 𝜎22
 𝑑  

𝑊𝑡
1

𝑊𝑡
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where 𝜇𝑖 ,i∈{1, 2},are the return rates, 𝜎𝑖𝑗 , i, j ∈{1, 2}, are the volatility constants, and (𝑊𝑡
1 ,𝑊𝑡

2) is a 2-

dimensional standard Brownian motion. Let 𝑍𝑡  mean long 𝑆1 and short 𝑆2at time t. Let l ∈{1, 2} denote the 

initial net position, and let τ0 < τ1 < τ2 < ⋯ denote sequence of stopping time. If initially the net position is 

long (l = 1), then one should sell 𝑍𝑡before acquiring any future share, i.e., trading sequence is denoted by 

Λ1 = (τ0 , τ1 , τ2 , … ).If the net position is flat (l = 0), then one should start to buy a share of 𝑍𝑡 , i.e., trading 

sequence is denoted byΛ0 = ( τ1 , τ2 , τ3 …). 

 

Let K denote the fixed percentage of transaction costs associated with buying and selling of stocks 𝑆𝑖 ,i∈{1, 

2}. Let 𝛽𝑏 = 1 + 𝐾, 𝛽𝑠 = 1 − 𝐾. Given the initial state (𝑥1 , 𝑥2), the initial net position l ∈{1, 2},and the 

decision sequences Λ0 and Λ1, the corresponding reward functions 

 

𝐽0(x1, x2 , Λ0) = 𝐸{[𝑒−𝜌𝜏2 𝛽𝑠𝑋𝜏2
1 − 𝛽𝑏𝑋𝜏2

2  𝐼 𝜏2<∞ − 𝑒−𝜌𝜏1 𝛽𝑏𝑋𝜏1
1 − 𝛽𝑠𝑋𝜏1

2  𝐼 𝜏1<∞ ] 

+ 𝑒−𝜌𝜏4 𝛽𝑠𝑋𝜏4
1 − 𝛽𝑏𝑋𝜏4

2  𝐼 𝜏4<∞ − 𝑒−𝜌𝜏3 𝛽𝑏𝑋𝜏3
1 − 𝛽𝑠𝑋𝜏3

2  𝐼 𝜏3<∞  + ⋯ }    

𝐽1(x1, x2 , Λ1) = 𝐸{𝑒−𝜌𝜏0 𝛽𝑠𝑋𝜏0
1 − 𝛽𝑏𝑋𝜏0

2  𝐼 𝜏0<∞  

+[𝑒−𝜌𝜏2 𝛽𝑠𝑋𝜏2
1 − 𝛽𝑏𝑋𝜏2

2  𝐼 𝜏2<∞ − 𝑒−𝜌𝜏1 𝛽𝑏𝑋𝜏1
1 − 𝛽𝑠𝑋𝜏1

2  𝐼 𝜏1<∞ ] 

+ 𝑒−𝜌𝜏4 𝛽𝑠𝑋𝜏4
1 − 𝛽𝑏𝑋𝜏4

2  𝐼 𝜏4<∞ − 𝑒−𝜌𝜏3 𝛽𝑏𝑋𝜏3
1 − 𝛽𝑠𝑋𝜏3

2  𝐼 𝜏3<∞  + ⋯ }, (2) 

 

where 𝜌 > 0 is a given discount factor and 𝐼 𝐴 is the indicator function of an event A. For initial net positions 

l ∈{1, 2},let𝑉𝑙(𝑥1, 𝑥2 , Λ𝑙)  denote the value functions with (𝑋0
1 , 𝑋0

2) = (𝑥1 , 𝑥2) . Namely, 𝑉𝑙(𝑥1, 𝑥2 , Λ𝑙) =
𝑠𝑢𝑝Λ𝑙

𝐽𝑙(𝑥1, 𝑥2 , Λ𝑙).  

 

Assume that 𝜌 > max 𝜇1 , 𝜇2 . To find the associated HJB equation, let 

𝒜 =
1

2
 𝑎11𝑥1

2 𝜕2

𝜕𝑥1
2 + 2𝑎12𝑥1𝑥2

𝜕2

𝜕𝑥1𝜕𝑥2
+ 𝑎22𝑥2

2 𝜕2

𝜕𝑥2
2 + 𝜇1𝑥1

𝜕

𝜕𝑥1
+ 𝜇2𝑥2

𝜕

𝜕𝑥2
.  (3) 

 

where 𝑎11 = 𝜎11
2 + 𝜎12

2 , 𝑎12 = 𝜎11𝜎21 + 𝜎12𝜎22 , 𝑎22 = 𝜎21
2 + 𝜎22

2 .Then the HJB equations have the form: for 

𝑥1 , 𝑥2 > 0, 

min 𝜌𝑣0 𝑥1 , 𝑥2 −𝒜𝑣0(𝑥1, 𝑥2 , 𝑣0 𝑥1 , 𝑥2 − 𝑣1 𝑥1 , 𝑥2 + 𝛽𝑏𝑥1−𝛽𝑠𝑥2} = 0, 

min 𝜌𝑣1 𝑥1 , 𝑥2 −𝒜𝑣1(𝑥1, 𝑥2 , 𝑣1 𝑥1, 𝑥2 − 𝑣0 𝑥1, 𝑥2 − 𝛽𝑠𝑥1+𝛽𝑏𝑥2} = 0.   (4) 

 

To convert them into single variable equations, let 𝑦 = 𝑥2/𝑥1 and 𝑣𝑙 𝑥1 , 𝑥2 = 𝑥1𝑤𝑙 𝑥1, 𝑥2 , for some 

function𝑤𝑙(𝑦),l ∈{1, 2}. Then 

𝒜 = 𝑥1  
1

2
[𝑎11 − 2𝑎12 + 𝑎22]𝑦2𝑤𝑙

′′ 𝑦 +  𝜇2 − 𝜇1 𝑦𝑤𝑙
′ 𝑦 + 𝜇1𝑤𝑙 𝑦    (5) 

 

In addition, the HJB equations in terms of 𝑦and 𝑤𝑙 𝑦 can be given as follows: 

min 𝜌𝑤0 𝑦 − ℒ𝑤0 𝑦 ,   𝑤0 𝑦 − 𝑤1 𝑦 + 𝛽𝑏 − 𝛽𝑠𝑦 = 0,   

min{𝜌𝑤1 𝑦 − ℒ𝑤1 𝑦 ,   𝑤1 𝑦 − 𝑤0 𝑦 − 𝛽𝑠 + 𝛽𝑏𝑦} = 0,   (6) 

 

where ℒ[𝑤𝑙 𝑦 ] = 𝜆𝑦2𝑤𝑙
′′ 𝑦 +  𝜇2 − 𝜇1 𝑦𝑤𝑙

′ 𝑦 + 𝜇1𝑤𝑙 𝑦 and 𝜆 =
𝑎11−2𝑎12 +𝑎22

2
, 𝜆 ≠ 0. Let 

𝛿1 =
1

2
 1 +

𝜇1−𝜇2

𝜆
+  (1 +

𝜇1−𝜇2

𝜆
)2 +

4𝜌+4𝜇1

𝜆
 > 1,  

𝛿2 =
1

2
 1 +

𝜇1−𝜇2

𝜆
− (1 +

𝜇1−𝜇2

𝜆
)2 +

4𝜌−4𝜇1

𝜆
 < 0.    (7) 

 

Then there exists 𝑟0 > (
𝛽𝑏

𝛽𝑠
)2such that 𝑓 𝑟0 = 0where 

𝑓 𝑟 = 𝛿1 1 − 𝛿2  𝛽𝑏𝑟
−𝛿2 − 𝛽𝑠  𝛽𝑏 − 𝛽𝑠𝑟

1−𝛿1   

−𝛿2 1 − 𝛿1  𝛽𝑏𝑟
−𝛿1 − 𝛽𝑠  𝛽𝑏 − 𝛽𝑠𝑟

1−𝛿2 .     (8) 
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With this 𝑟0,𝑘1and 𝑘2are given by 

𝑘1 =
𝛿2 𝛽𝑏𝑟0

−𝛿1−𝛽𝑠 

 1−𝛿2  𝛽𝑏−𝛽𝑠𝑟0
1−𝛿1 

=
𝛿1 𝛽𝑏𝑟0

−𝛿2−𝛽𝑠 

 1−𝛿1  𝛽𝑏−𝛽𝑠𝑟0
1−𝛿2 

,  

𝑘2 =
𝛿2 𝛽𝑏𝑟0

1−𝛿1−𝛽𝑠𝑟0 

 1−𝛿2  𝛽𝑏−𝛽𝑠𝑟0
1−𝛿1 

=
𝛿1 𝛽𝑏𝑟0

1−𝛿2−𝛽𝑠𝑟0 

 1−𝛿1  𝛽𝑏−𝛽𝑠𝑟0
1−𝛿2 

.    (9) 

 

The below two theorems are proved and guarantee the optimality of value functions 𝑉𝑙(𝑥1 , 𝑥2 , Λ𝑙). 

Theorem 1. Let 𝛿𝑖  be given by (7) and 𝑘𝑖be given by (9) for i ∈{1, 2}. Then, the following functions𝑤0and 

𝑤1satisfy the HJB equation: 

 

𝑤0 (𝑦) =

 
 
 

 
  

𝛽𝑏(1 − 𝛿2)𝑘1
1−𝛿1 + 𝛽𝑠𝛿2𝑘1

−𝛿1

𝛿1 − 𝛿2
 𝑦𝛿1 𝑖𝑓 0 < 𝑦 < 𝑘2

 
𝛽𝑏(1 − 𝛿1)𝑘1

1−𝛿2 + 𝛽𝑠𝛿1𝑘1
−𝛿2

𝛿1 − 𝛿2
 𝑦𝛿2 + 𝛽𝑠𝑦 − 𝛽𝑏 𝑖𝑓𝑦 ≥ 𝑘2

  

𝑤1 (𝑦) =

 
 
 

 
  

𝛽𝑏(1 − 𝛿2)𝑘1
1−𝛿1 + 𝛽𝑠𝛿2𝑘1

−𝛿1

𝛿1 − 𝛿2
 𝑦𝛿1 + 𝛽𝑠 − 𝛽𝑏𝑦 𝑖𝑓 0 < 𝑦 < 𝑘1

 
𝛽𝑏(1 − 𝛿1)𝑘1

1−𝛿2 + 𝛽𝑠𝛿1𝑘1
−𝛿2

𝛿1 − 𝛿2
 𝑦𝛿2 𝑖𝑓𝑦 ≥ 𝑘1

  

 

Define the first quadrant 𝑃 = {(𝑥1 , 𝑥2): 𝑥1 > 0 𝑎𝑛𝑑𝑥2 > 0} and three regions Γ1 = {(𝑥1, 𝑥2) ∈ 𝑃: 𝑥2 ≤
𝑘1𝑥1},Γ2 = {(𝑥1 , 𝑥2) ∈ 𝑃: 𝑘1𝑥1 ≤ 𝑥2 ≤ 𝑘2𝑥1}and Γ3 = {(𝑥1 , 𝑥2) ∈ 𝑃: 𝑥2 ≥ 𝑘2𝑥1}. 

Theorem 2. We have 𝑣𝑙 𝑥1, 𝑥2 = 𝑥1𝑤𝑙 𝑥2/𝑥1 = 𝑉𝑙 𝑥1, 𝑥2 , 𝑙 = 0, 1.Moreover, if initially l = 0, let Λ0
∗ =

(τ1
∗ , τ2

∗ , τ3
∗ …) such that τ1

∗ = 𝑖𝑛𝑓{𝑡 ≥ 0: (𝑋𝑡
1 , 𝑋𝑡

2) ∈ Γ3}, τ2
∗ = 𝑖𝑛𝑓{𝑡 ≥ τ1

∗ : (𝑋𝑡
1 , 𝑋𝑡

2) ∈ Γ1}, τ3
∗ = 𝑖𝑛𝑓{𝑡 ≥

τ2
∗ : (𝑋𝑡

1 , 𝑋𝑡
2) ∈ Γ3}, and so on. Similarly, if initially l = 1, let Λ1

∗ = (τ0
∗ , τ1

∗ , τ2
∗ …) such that τ0

∗ = 𝑖𝑛𝑓{𝑡 ≥
0: (𝑋𝑡

1 , 𝑋𝑡
2) ∈ Γ1}, τ1

∗ = 𝑖𝑛𝑓{𝑡 ≥ τ0
∗ : (𝑋𝑡

1 , 𝑋𝑡
2) ∈ Γ3}, τ2

∗ = 𝑖𝑛𝑓{𝑡 ≥ τ1
∗ : (𝑋𝑡

1 , 𝑋𝑡
2) ∈ Γ1}, and so on. Then Λ0

∗and 

Λ1
∗  are optimal. 

 

Remark 1. In their paper, they mentioned if (𝑘1 , 𝑘2) level for 𝑆1 − 𝑆2(long 𝑆1  and short 𝑆2) pair 

trading was obtained, then (𝑘1
 ,𝑘2

 ) level for 𝑆2 − 𝑆1 (long 𝑆2 and short 𝑆1) pair trading was simply given by 

𝑘1
 = 1/𝑘2 , 𝑘2

 = 1/𝑘1. 
 

Remark 2. In this paper, the value of the starting position of pair trading consisting of 𝑆𝑖  and 𝑆𝑗will be 

set to zero. That is, 𝑍0 = 0by setting 𝑍𝑡 = 𝑋𝑡
𝑖/𝑋0

𝑖 − 𝑋𝑡
𝑗
/𝑋0

𝑗
. If the time series 𝑋𝑡

𝑗
/𝑋𝑡

𝑖 is greater than 𝑘2 at first, 

we should buy 𝑍𝑡and the performance should follow 𝑉0 𝑥𝑖 , 𝑥𝑗  . If the series 𝑋𝑡
𝑗
/𝑋𝑡

𝑖 is smaller than 𝑘1 at first, 

we should sell 𝑍𝑡  and the performance should follow 𝑉1 𝑥𝑖 , 𝑥𝑗  .  

 

3. Data and Technical Background 

 

In this study, 83 stocks from the S&P100 Index in 2020 were selected based on the existence of their 

data from January 3, 2000, to January 15, 2020(= 5042 observations). To carry out an empirical study, the 

data must cover the same period, so we discarded 18 stocks from the 101 components
i
 of the S&P100 Index. 

Table 1 represents the data of stock names and the corresponding abbreviations. We collected 

adjusted daily closing stock prices using Yahoo financedata
ii
. 

 

Table 1. The 83 stocks selected on the S&P Index 

No. Ticker Company No. Ticker Company 

1 AAPL Apple Inc. 43 INTC Intel Corp. 

2 ABT Abbott Laboratories 44 JNJ Johnson & Johnson 

3 ADBE Adobe Inc. 45 JPM JPMorgan Chase & Co. 
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4 AIG 
American International 

Group 
46 KO The Coca-Cola Company 

5 ALL Allstate 47 LLY Eli Lilly and Company 

6 AMGN Amgen Inc. 48 LMT Lockheed Martin 

7 AMT American Tower 49 LOW Lowe's 

8 AMZN Amazon.com 50 MCD McDonald's Corp 

9 AXP American Express 51 MDT Medtronic plc 

10 BA Boeing Co. 52 MMM 3M Company 

11 BAC Bank of America Corp 53 MO Altria Group 

12 BIIB Biogen 54 MRK Merck & Co. 

13 BK 
The Bank of New York 

Mellon 
55 MS Morgan Stanley 

14 BKNG Booking Holdings 56 MSFT Microsoft 

15 BLK BlackRock Inc 57 NEE NextEra Energy 

16 BMY Bristol-Myers Squibb 58 NKE Nike, Inc. 

17 BRK.B Berkshire Hathaway 59 NVDA Nvidia Corporation 

18 C Citigroup Inc 60 ORCL Oracle Corporation 

19 CAT Caterpillar Inc. 61 OXY 
Occidental Petroleum 

Corp. 

20 CL Colgate-Palmolive 62 PEP PepsiCo 

21 CMCSA Comcast Corp. 63 PFE Pfizer Inc 

22 COF Capital One Financial Corp. 64 PG Procter & Gamble Co 

23 COP ConocoPhillips 65 QCOM QUALCOMM 

24 COST Costco Wholesale Corp. 66 RTX Raytheon Technologies 

25 CSCO Cisco Systems 67 SBUX Starbucks Corp. 

26 CVS CVS Health 68 SLB Schlumberger 

27 CVX Chevron Corporation 69 SO Southern Company 

28 DD DuPont de Nemours Inc 70 SPG 
Simon Property Group, 

Inc. 

29 DHR Danaher Corporation 71 T AT&T Inc 

30 DIS The Walt Disney Company 72 TGT Target Corporation 

31 DUK Duke Energy 73 TMO Thermo Fisher Scientific 

32 EMR Emerson Electric Co. 74 TXN Texas Instruments 

33 EXC Exelon 75 UNH UnitedHealth Group 

34 F Ford Motor Company 76 UNP Union Pacific Corporation 

35 FDX FedEx 77 UPS United Parcel Service 

36 GD General Dynamics 78 USB U.S. Bancorp 

37 GE General Electric 79 VZ Verizon Communications 

38 GILD Gilead Sciences 80 WBA Walgreens Boots Alliance 

39 GS Goldman Sachs 81 WFC Wells Fargo 

40 HD Home Depot 82 WMT Walmart 

41 HON Honeywell 83 XOM Exxon Mobil Corp. 
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42 IBM International Business Machines 
  

 

3.1 Determination of pairs using the cointegration test 

 

There are several methods for pair selection in pairs trading such as the stochastic approach 

(Mudchanatongsuk, Primbs and Wong(2008), Tourin and Yan(2013)), the discrete approach (Nath(2004), Rad, 

Low and Faff(2016)), and the cointegration approach (Fallahpour et al.(2016), Rad et al.(2016). We use the 

cointegration approach in this article. To introduce the definition of the cointegration, let 𝑥𝑡  and 𝑦𝑡have unit 

roots, and𝑥𝑡~𝐼(1), 𝑦𝑡~𝐼(1). If there is a relationship between 𝑥𝑡  and 𝑦𝑡such that 

𝑒𝑡=𝑦𝑡 − 𝛽1 − 𝛽2𝑥𝑡~𝐼(0) 

 

, then ~𝐼(1), are said to be cointegrated. Cointegration implies that 𝑥𝑡  and 𝑦𝑡share similar stochastic 

trends, and theynever diverse too far from each other. Here,we used the Johansen(1988)’s test to determine 

whether a pair of two stocks among the 83 stocks from the S&P100 components is cointegrated. 

 

For the optimal pairs trading, we need to determine whether the given pair is cointegrated or notand 

find the thresholds such as 𝑘1𝑎𝑛𝑑𝑘2, and we use data from 252 business days for these calculations. We call 

this period the observation period. Once the thresholds are obtained, the performance of the optimal pairs 

trading with the thresholds will be calculated for 126 days following the observation period. We call this 

period the back-testing period. Denote 𝛼 as the significance level of Johansen's cointegration test. Denote  

𝒞𝛼
𝑛 : = {(𝑖, 𝑗)| stock i and stock j are cointegrated with significant level 𝛼at the period n}  

and |𝒞𝛼
𝑛 |as the number of elements of the set 𝒞𝛼

𝑛 . Table 2 shows the number of cointegrated pairs on 

the given observation period of each consecutive period between 2000 and 2019 with 𝛼 = 5% significance 

level on Johansen test among  
83
2
 = 3403 cases. The period index in the table is the index of the given 

observation period. If the index is given as n, this period refers to the observation period from January 3, 2000 

+ 126(n-1) business days to 252 business days thereafter. Figure 1 shows price movements of the pair of 

cointegrated stocks, Medtronic and Merck & Co., in the sample period from 2000 to 2019. 

 

Table 2. Number of Cointegrated pairs for a given period n. 𝛼 = 5%. 

years |𝒞𝛼
𝑛 | years |𝒞𝛼

𝑛 | 

2000 301 2010 88 

2001 698 2011 174 

2002 495 2012 72 

2003 30 2013 53 

2004 87 2014 84 

2005 142 2015 403 

2006 120 2016 319 

2007 72 2017 63 

2008 203 2018 150 

2009 50 2019 95 
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Figure 1. An example figure of a cointegrated pair: Medtronic vs. Merck & Co. 

 
 

3.2 Pairs Trading Strategy 

 

The key to pairs trading is to get a signal of when to buy and sell the pair of stocks that have been 

cointegrated, and section 2 illustrates how to obtain the trading signals (𝑘1 , 𝑘2). When the cointegration is 

confirmed using the data of the observation period of two stocks i and j, (𝑘1 , 𝑘2) of the two stocks are obtained. 

Then, using the data of the back-testing period of the two stocks, we find the series of stopping times. If 

𝑥2/𝑥1 > 𝑘2 at time 𝑡 = 𝜏∗ , or similarly 𝜏∗ ∈ Γ3 , then we take long 𝑍𝜏∗ , and if 𝑥2/𝑥1 < 𝑘1  at time 𝜏∗ , or 

similarly 𝜏∗ ∈ Γ1 , then we take short 𝑍𝜏∗ . If the series is Λ0 ,𝑉0 𝑥𝑖 , 𝑥𝑗   is obtained, and if Λ1 ,𝑉1 𝑥𝑖 , 𝑥𝑗  is 

obtained as the performance of the stocks i and j in a period. Define the performance of the pair trading with 

cointegrated stocks i and j at the period n as 

Π𝑖𝑗
𝑛 =  

𝑉0 𝑥𝑖 , 𝑥𝑗  if the stopping time series = Λ0

𝑉1 𝑥𝑖 , 𝑥𝑗  if the stopping time series = Λ1

  

3.3 Measure of Performance 
 

To measure the performance, we need to consider where the principal is invested in 𝑍𝑡 -trading. 𝑍𝑡 is a 

transaction of long one stock 𝑆1and selling another stock 𝑆2 at time t. Since the value of the short position is 

the same as the long position at the beginning of the back-testing, the long position can be financed by the 

short position because the value of long position stock at the buying time is usually less than or equal to the 

value of the stock price at the beginning. Namely, the principle is no more used for the long position of 𝑍𝑡 . On 

the other hand, the short sale requires that the stock 𝑆2 be borrowed at the beginning, and for this purpose, it 

can be done by depositing other assets or just money of the same value, or at least a fraction of it. This is so-

called collateral, and the borrower has to pay an initial margin to his/her margin account. In addition, if the 

value of the short-selling stock 𝑆2 increases enough, an additional amount must be deposited in the margin 

account again. This makes it difficult to calculate the investment capital. A more obvious way to calculate the 

investment capital is to buy the stock 𝑆2 at the beginning of the trading period, and sell 𝑆2 at the end of the 

trading period where the trading period is from t=0 to t=T. Then, by subtracting (𝑋𝑇
2 − 𝑋0

2)/𝑋0
2 from the final 

performance, you can calculate the pure profit/loss Π𝑖𝑗
𝑛  for the pairs trading with the investment principal of 

𝑆2. We will look at the differences in the performance of these two transactions in section 4. 
 

In addition, the profit/loss formula Π𝑖𝑗
𝑛  is sometimes likely to end with the purchase of 𝑍𝑡  at a time 

t<T. In this case, one should sell 𝑍𝑇  to finish the trading, and the last transaction 𝑍𝑡 − 𝑍𝑇  may be positive or 

negative. Since it is thought that the expectation of the final calculation will be close to 0 in the mean of the 

overall calculation, the transaction will be omitted if it ends with the purchase of 𝑍𝑡  at the end of the back-

testing period.  
 

If the investor's principal is P, the principal and total profit after all transactions ending in period n can 

be calculated as P 1 +  Π𝑖𝑗
𝑛 /|𝒞𝛼

𝑛 |(𝑖,𝑗 )∈𝒞𝛼
𝑛  .If the investor rolls over this pairs trading strategy by m times, that 

is, keeps this contract for m×126 days, the investor's return can be calculated as P  1 +  Π𝑖𝑗
𝑛 /(𝑖,𝑗 )∈𝒞𝛼

𝑛
𝑚
𝑛=1

|𝒞𝛼𝑛|. 
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4. Data and Technical Background 

 

In this section, we look at the performance of this strategy when we continued the pairs trading 

strategy with 83 stocks from 2000 to early 2020 (5042 business days). We use the parameters, K = 0.001, 𝛼= 

5%,and𝜌 =100. The observation period is 1 year (252 days) and the back-testing period is 6 months (126 days) 

after the observation period. Therefore, there are 38 periods of investing in pairs trading for 6 months. At the 

end of each period, we will roll over to the next period to see how much return can be obtained over 19 years 

and compare this with the rate of return of S&P100.The procedure is as follows. 
 

Algorithm: 

 

1. Set K=0.001, 𝛼 = 0.01, 𝜌 = 10. 

2. FOR n=1:38 

3.  FOR i=2:83 

4. FOR j=1:i-1  

5. Take daily data set of i, j stocks for the observation period n. 

6.  IF (i,j) ∈ 𝒞𝛼
𝑛 then 

7.   Calculate 𝑘1 , 𝑘2 

8.  Take daily data set of i, j stocks for the back testing period n. 

9.   Calculate Λ0 or Λ1 

10. Calculate Π𝑖𝑗
𝑛 . 

11. Calculate the principle and profit for period n = P 1 +  Π𝑖𝑗
𝑛 /|𝒞𝛼

𝑛 |(𝑖,𝑗 )∈𝒞𝛼
𝑛   

12. Return Overall Performance=P  1 +  Π𝑖𝑗
𝑛 /|𝒞𝛼

𝑛 |(𝑖,𝑗 )∈𝒞𝛼
𝑛  38

𝑛=1  

 

Figure 2. An Example of 𝑘1 , 𝑘2 , 𝑋2/𝑋1, and the equity curve of a pair trading during period 1. 

 

Figure 2 shows the performance of one of the pairs that make up the pairs trading strategy over a 

period. The observation period for the Figure 2 is the first period, from January 3, 2000 to December 29, 

2000, and the back-testing period is from January 2, 2001 to July 2, 2001. 𝑆1  is Adobe Inc., and 𝑆2 is 

American Tower. Figure 2 shows the 𝑘1 = 0.9644, 𝑘2 = 1.0257 levels calculated during the observation 

period, the time series graph of 𝑋2/𝑋1, and the equity curve representing the returns generated by the pair 

trading.If $100 was invested in this transaction from January 2, 2001 to July 2, 2001, it would be $133.40 as 

of July 2, 2001, the end of the investment. Of course, this is only one pair with very good performance among 

the pairs that make up pairs trading, but not all pairs have such good returns. However, by taking the average 

of the returns of all pairs that are cointegrated, you can obtain the expected return of this strategy. 
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Figure 3. The equity curve of the pairs trading vs. S\&P100 index in period 1. 

 

Figure 3 shows the equity curve of the pairs trading consisting of 301 pairs during the back-testing 

period when the observation period is given from January 3, 2000 to December 29, 2000, and the back-testing 

period is given from January 2, 2001 to July 2, 2001. It shows that the average return on the pairs trading is 

13.98%. For comparison with the S&P100 index, the performance of the S&P100 index at the same period is 

also displayed. 

 

Figure 4. The equity curves of the pairs trading with or without short selling, and S&P100 index in whole 

periods. 

 

 

Figure 4 shows the equity curves that can be obtained assuming that the pairs trading strategies with 

or without short selling are rolled over from 2001 to early 2020, along with the S&P100 index. In the legend 

of the figure, "Equity curve" represents the equity curve of the pairs trading strategy with short selling, and 

"Equity curve w/o SS" represents the equity curve of the pairs trading strategy without short selling. In this 

transaction, we assumed that the pairs trading strategy makes a profit for each period and reinvests the 

principal and the profit in the pairs trading strategy for the next period until early 2020. In this test, it was 

found that if an investor invested $100 in principal for about 19 years, the S&P100 index could earn $220.3, 

whereas the pairs trading strategy could earn more than $1137.95. We also calculated the performance of 

back-testing for the pairs trading strategy when short selling was prohibited.  

 

Table 3. The difference between the pairs trading and the pairs trading without short selling. 

Symbol S&P100 PT PT w/o SS Difference 

02-Jan-01 1.000  1.000  1.000  0.00% 

02-Jan-04 0.824  1.710  1.693  0.99% 
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03-Jan-07 0.990  2.353  2.686  14.15% 

04-Jan-10 0.784  4.205  4.798  14.10% 

02-Jan-13 0.995  5.713  7.124  24.70% 

04-Jan-16 1.344  7.421  10.301  38.81% 

02-Jan-19 1.676  10.140  14.607  44.05% 

02-Jan-20 2.186  11.365  16.490  45.09% 
 

Table 3 shows the difference between the general pairs trading strategy(PT as the abbreviation) and 

the pairs trading strategy when short selling is prohibited(PT w/o SS), and we can see that the pairs trading 

strategy without short selling earns 45.09% more than the overall performance of the pairs trading strategy 

with short selling. The difference came from the selection of stocks and income of general stock trades so that 

the general expectation of stock price is positive. 

 

Table 4. The Sharpe ratio 

 S&P100 PT PTw/o SS 

Expected Portfolio Return (Rx) 5% 14% 16% 

Risk Free Rate (Rf) 3% 3% 3% 

Standard Deviation of Rx 16% 6% 6% 

SHARPE RATIO =  0.16  1.84  2.34  

 

Table 4 shows the results of calculating the Sharpe ratio of the S&P100 index, PT and PT w/o SS 

strategies. The values of the Sharpe ratio were calculated as 0.16, 1.84, and 2.34, respectively. The Sharpe 

ratio in the PT strategy was measured as closer to 2, which shows that the strategy has considerable 

competitiveness. The annual expected portfolio return of PT is measured as 14%.  

 

Table 5. Dependency of the performance with varying K. 𝛼 =0.05, and 𝜌 =100. 

K 0.0001 0.0005 0.001 0.002 0.003 0.005 

Performance 13.4244  12.1852  11.3795  10.4929  9.7384  8.7154  
 

Finally, we vary one of parameters K, 𝛼 , and 𝜌at a time and examine the dependence of the 

performance by the pairs trading strategy. Table 5 shows the change of performance when K is varying. When 

the K value was 0.0001 among the investigated values, the highest performance was obtained. If the K value 

was high or low, the performance was adversely affected. The larger the value of K, the larger the gap 

between 𝑘1 and 𝑘2 . If the gap between 𝑘1 and 𝑘2  is too narrow, transactions are made frequently, but the 

profits from transactions are limited. On the other hand, if the gap is too wide, the trading opportunities are 

reduced, and performance may decrease. 

 

Table 6. Dependency of the performance with varying 𝛼, and 𝜌. K=0.001. 

𝜌＼ 𝛼 0.1% 0.5% 1% 5% 10% 99% 

2 1.54  2.84  3.04  2.93  3.13  3.52  

5 3.39  5.97  6.81  7.98  7.57  7.56  

10 3.61  5.36  6.61  8.55  8.85  9.39  

20 3.43  5.65  7.72  9.26  10.79  11.38  

50 3.38  5.64  7.64  9.32  10.67  11.42  
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100 2.99  5.88  8.37  10.46  12.06  12.99  

500 3.49  8.16  10.87  13.01  12.77  14.49  

1000 3.45  8.91  11.20  13.49  13.15  14.95  

 

The Table 6 measures the sensitivity of performance: when K is fixed at 0.001, 𝜌 is changed from 1 to 

100, and 𝛼 is changed from 0.001 to 0.99. Overall, as 𝜌 increases and 𝛼 increases, it can be seen that the value 

of performance increases. However, when 𝛼  is greater than 0.005, the difference in performance is not 

noticeably large. On the other hand, the value of 𝜌 seems to show the best performance values around 20.The 

most notable part is the performance value when 𝛼=0.99. The performance when 𝛼=0.99 means the value of 

performance when all companies handled in this research invest evenly in almost all pairs that can be 

constructed by all companies. This simply means that this pairs trading strategy does not require a 

cointegration test in the pair selection process. This is because buying and selling levels of this strategy are not 

determined by the difference between the price levels of the two stocks constructing a pair, but by the ratio of 

the price levels of two stocks.The effect of 𝜌 on performance is even more dramatic. In our setting, the default 

value of 𝜌 is 100, but if we set the value of 𝜌 to a value greater than 100, as shown in the Table 2, we can 

expect better overall performance. According to Tie et al. (2018), the only limit for 𝜌 is just 𝜌 > max 𝜇1 , 𝜇2 . 
They said "𝜌 serves as a combined discounting and risk aversion rate." (p.659) Also, "Larger 𝜌 encourages 

quicker profits, which leads to more buying and shorter holding." (p.673). That is, 𝜌 penalizes late earnings. 

Therefore, 𝜌 seems to be related to the length of the back-testing period as well. If the investment period is 

short, it would be more advantageous to set a large value of 𝜌 to generate faster profits. 
 

Figure 5. Changes of returns and equity curves of a pair trading when 𝜌 changes. 

 

Figure 5 shows the changes in the equity curve expressed in Figure 3 when 𝜌 is changed to 2, 5, 10, 

and 20. Although not all returns increased as rho increased, the increasein 𝜌 moved 𝑘1 and 𝑘2, causing pairs 

trading profits to be realized faster, leading to an early rise in the equity curve.  
 

 

Figure 6. Histograms of returns of pairs trading contracts when 𝜌 changes. 
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Where 𝛼 =0.01, the number of cointegrated pairs in a period 1 is 49 pairs. In Figure 6, the histograms 

show how the distribution of profits of 49 pairs during period 1 changes when 𝜌 increases. As the 𝜌 rises from 

2 to 20, the number of pairs for which the profit during period 1 is 0 decreases, and the average of the profits 

rises from 0.03 to 0.11. 
 

5. Conclusion 
 

Through the research, we confirmed how much profit the pairs trading strategy of the stocks 

following Geometric Brownian Motion has in the market, using the data of the stocks constituting the 

S&P100. Pairs trading strategy has a distinctive advantage in that it can generate profits regardless of market 

conditions. If there is a way to generate optimal profits, it will be a very attractive strategy for the market.  
 

For the optimal solution of the pairs trading strategy used in this study, we referred to Tie et al.(2018), 

and several conditions were reinterpreted to apply the research results to the actual market. We implemented a 

pairs trading strategy using 20-year data of the stocks included in the S&P100 portfolio, and as a result, the 

pairs trading strategy yielded more than three times the return in the S&P100 of the same period. The Sharp 

ratio of this pairs trading strategy is higher than 1.84, which can be classified as a good strategy for 

investment.In particular, it was confirmed that the 𝜌  and 𝛼  variables have significant influence on the 

performance of the portfolio, and that the choice of the 𝜌 and 𝛼 can result in better performance.  
 

We also examined the effectiveness of the cointegration test to this pairs trading strategy, which is 

frequently used for traditional pairs selection in general pairs trading strategies. As the significance level 𝛼 of 

the cointegration test is closer to 0, the difference between the stocks making up pairs is more likely to follow 

the mean-reversion model. In our research, despite 𝛼 was sufficiently small, the overall performance did not 

increase. Rather, the closer the alpha is to 1, the slightly higher overall performance. In other words, this result 

shows that applying the cointegration test to this pairs selection has no effect in the optimal pairs trading 

strategy under Geometric Brownian Motion.This makes this pairs trading strategy be simpler in pairs selection 

perspectives.  
 

Further studies to find a method of pairs selection, or an optimal value problem for 𝜌 and 𝛼 forthis 

pairs trading strategy will also be very interesting.  

 

References 

 

Dai, M., Zhang, Q., Zhu, Q.(2010). Trend following trading under a regime switching model. SIAM Journal 

on Financial Mathematics 1(1), 780–810  

Fallahpour, S., Hakimian, H., Taheri, K., Ramezanifar, E.(2016).Pairs trading strategy optimization using the 

reinforcement learning method: a cointegration approach. Soft Computing 20(1), 5051–5066  

Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G.(2006).Pairs trading: Performance of a relative-value 

arbitrage rule. Yale ICF Working Paper No. 08-03 8(3), 47 

Guo, X., Zhang, Q.(2005). Optimal selling rules in a regime switching model. IEEE Transactions on 

Automatic Control 50(9), 1450—-1455  

Johansen, S.(1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 

12(2), 231—-254  

Lin, Y.X., McCrae, M., Gulati, C.(2006). Loss protection in pairs trading through minimum profit bounds: A 

cointegration approach. Journal of Applied Mathematics and Decision Sciences 2006(1), 1–14  

Mashele, HP, Terblanche, SE and Venter, JH. (2013). Pairs trading on the Johannesburg Stock Exchange. 

Investment Analysts Journal, 42(78), 13-26 

Mikkelsen, A.(2018).Pairs trading: the case of norwegian seafood companies. Applied Economics 50(3), 303–

318 

Mudchanatongsuk, S., Primbs, J.A., Wong, W.(2008). Optimal pairs trading: A stochastic control approach  

Nath, P.(2003). High frequency pairs trading with U.S. treasury securities: risks and rewards for hedge funds  

Rad, H., Low, R.K.Y., Faff, R.W.(2015). The profitability of pairs trading strategies: distance, cointegration 

and copulamethods. Quantitative Finance 16(10), 1541—1558  

Song, Q., Zhang, Q.(2013). An optimal pairs-trading rule. Automatica 49(10), 3007–3014  

Tie, J., Zhang, H., Zhang, Q.(2018). An optimal strategy for pairs trading under geometric Brownian motions. 

Journal of Optimal Theory and Application 179(2), 654–675  

Tourin, A., Yan, R.(2013). Dynamic pairs trading using the stochastic control approach. Journal of Economic 

Dynamics & Control 37(10), 1972—-1981  



Dong-Hoon Shin, Dongwook Kim & Changki Kim                        Doi: 10.48150/jbssr.v2no3.2021.a1 

 

13 

Vidyamurthy, G.(2004). Pairs Trading: Quantitative Methods and Analysis. Wesley, Hoboken, New Jersey  

Zhang, Q.(2001). Stock trading: an optimal selling rule. SIAM Journal on Control and Optimization 40(1), 

64–87 

 

                                                      
i
https://www.ishares.com/us/products/239723/ishares-sp-100-etf 

ii
https://finance.yahoo.com/ 

 


